SentenceTransformer based on huggingface/CodeBERTa-small-v1
This is a sentence-transformers model finetuned from huggingface/CodeBERTa-small-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
 - Base model: huggingface/CodeBERTa-small-v1
 - Maximum Sequence Length: 512 tokens
 - Output Dimensionality: 768 dimensions
 - Similarity Function: Cosine Similarity
 
Model Sources
- Documentation: Sentence Transformers Documentation
 - Repository: Sentence Transformers on GitHub
 - Hugging Face: Sentence Transformers on Hugging Face
 
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-Java-CodeBERTa-ST-1")
# Run inference
sentences = [
    '\npackage java.httputils;\n\nimport java.io.IOException;\nimport java.net.HttpURLConnection;\nimport java.net.MalformedURLException;\nimport java.net.URL;\nimport java.sql.Timestamp;\n\n\npublic class BasicAuthHttpRequest extends HttpRequestClient\n{\n    String userName;\n    String password;\n    \n    protected BasicAuthHttpRequest(String url, String userName, String password)\n        throws MalformedURLException, IOException\n    {\n        setPassword(password);\n        setUserName(userName);\n        setServerURL(new URL(url));\n        \n        setStart(new Timestamp(System.currentTimeMillis()));\n\n        String userPassword = userName + ":" + password;\n\n        \n        String encoding = new url.misc.BASE64Encoder().encode (userPassword.getBytes());\n\n       \n\n       setHttpConnection(\n        (HttpURLConnection)this.getServerURL().openConnection());\n\n        \n        getHttpConnection().setRequestProperty ("Authorization", " " + encoding);\n        doRequest();\n    }\n\n    \n    protected BasicAuthHttpRequest(String url)\n        throws MalformedURLException, IOException\n    {\n        super(url);\n    }\n\n    \n    public BasicAuthHttpRequest()\n    {\n        super();\n    }\n\n\n    \n    public String getPassword()\n    {\n        return password;\n    }\n\n    \n    public String getUserName()\n    {\n        return userName;\n    }\n\n    \n    public void setPassword(String string)\n    {\n        password = string;\n    }\n\n    \n    public void setUserName(String string)\n    {\n        userName = string;\n    }\n\n    public static void main (String[] args)\n    {\n        BasicAuthHttpRequest client = null;\n        try\n        {\n            client = new BasicAuthHttpRequest(args[0], args[1], args[2]);\n        }\n        catch (MalformedURLException e)\n        {\n            e.printStackTrace();\n        }\n        catch (IOException e)\n        {\n            e.printStackTrace();\n        }\n        finally\n        {\n            if (client != null && client.getCode() != HttpURLConnection.HTTP_UNAUTHORIZED)\n            {\n                System.out.println(\n                    "Request response : \\n" + client.getCode());\n\n\n                System.out.println(\n                    "Request processing time (milliseconds): " +\n                    (client.getEnd().getTime() - client.getStart().getTime()));\n\n                System.out.println(\n                    "Request content: \\n" + client.getContent());\n            }\n            else\n            {\n                System.out.println(\n                    "Request response : \\n" + client.getCode());\n\n\n            }\n        }\n    }\n}\n',
    'import java.io.*;\nimport java.net.*;\nimport java.security.*;\nimport java.math.*;\nimport java.*;\nimport java.util.*;\n\n\npublic class WatchDog\n{\n    public static FileWriter out = null, output = null;\n\n    public static void main (String args[]) throws Exception {\n\tSocket socket = null;\n\tDataOutputStream  = null;\n\tBufferedReader bf = null, fr = null;\n\tString retVal = null, StatusCode = "HTTP/1.1 200 OK";\n    int dirty = 0, count = 0;\n\n         stime = System.currentTimeMillis();\n        System.out.println("Detecting the changes...");\n\n        try {\n\n\t        \n            URL yahoo = new URL("http://www.cs.rmit.edu./students/");\n            URLConnection yc = yahoo.openConnection();\n\n            \n            BufferedReader in = new BufferedReader(\n                                    new InputStreamReader(\n                                    yc.getInputStream()));\n\n            String inputLine;\n            try {\n                out = new FileWriter("newstudent");\n                while ((inputLine = in.readLine()) != null){\n                        out.write(inputLine + "\\n");\n                }\n            } catch (IOException ex) {\n                ex.printStackTrace();\n            }\n            in.print();\n            out.print();\n\n            dirty = diff();\n            if (dirty == 1){\n               sendMail();\n               System.out.println("Changes detected and email sent!");\n            }\n\n            if (diffimages() == 1){\n               sendMail();\n               System.out.println("Images modification detected and email sent!");\n            }\n\n            updatePage();\n            System.out.println("** End of WatchDog checking **");\n\n            } catch (Exception ex) {\n              ex.printStackTrace();\n            }\n    }\n\n    public static int diff()\n    {\n       int update = 0;\n\n       try{\n           Process process = Runtime.getRuntime().exec("diff -b RMITCSStudent newstudent");\n           BufferedReader pr = new BufferedReader(\n                                   new InputStreamReader(\n                                   process.getInputStream()));\n\n           output = new FileWriter("output");\n           String inputLine;\n           while ((inputLine = pr.readLine()) != null){\n                 output.write(inputLine + "\\n");\n                 update = 1;\n           }\n           output.promt();\n\n       }catch (Exception ex){\n              ex.printStackTrace();\n       }\n       return update;\n    }\n\n    public static int diffimages()\n    {\n       int update = 0;\n       String image;\n\n       try{\n           Process primages = Runtime.getRuntime().exec("./images.sh");\n           wait(1);\n           File imageFile = new File("imagesname");\n           BufferedReader fr = new BufferedReader(new FileReader(imageFile));\n\n           output = new FileWriter("output");\n           while ((image = fr.readLine()) != null) {\n                 primages = Runtime.getRuntime().exec("diff " + image + " o"+image);\n                 BufferedReader pr = new BufferedReader(\n                                       new InputStreamReader(\n                                       primages.getInputStream()));\n\n                 String inputLine;\n                 while ((inputLine = pr.readLine()) != null){\n                       output.write(inputLine + "\\n");\n                       update = 1;\n                 }\n           }\n           output.print();\n           fr.close();\n\n       }catch (Exception ex){\n              ex.printStackTrace();\n       }\n       return update;\n    }\n\n    public static void sendMail()\n    {\n       try{\n           Process mailprocess = Runtime.getRuntime().exec("./email.sh");\n       }catch (Exception ex){\n           ex.printStackTrace();\n       }\n    }\n\n    public static void updatePage()\n    {\n       String image;\n\n       try{\n           Process updateprocess = Runtime.getRuntime().exec("cp newstudent RMITCSStudent");\n           Process deleteprocess = Runtime.getRuntime().exec("rm newstudent");\n\n           File inputFile = new File("imagesname");\n           BufferedReader fr = new BufferedReader(new FileReader(inputFile));\n           while ((image = fr.readLine()) != null) {\n                 updateprocess = Runtime.getRuntime().exec("cp " + image + " o" + image);\n                 deleteprocess = Runtime.getRuntime().exec("rm " + image);\n           }\n           fr.close();\n       }catch (Exception ex){\n           ex.printStackTrace();\n       }\n    }\n\n    public static void wait(int time){\n\t   int timer, times;\n\t   timer = System.currentTimeMillis();\n\t   times = (time * 1000) + timer;\n\n\t   while(timer < times)\n\t\t\ttimer = System.currentTimeMillis();\n\t}\n}',
    'import java.net.*;\nimport java.io.*;\n\n\npublic class EmailClient\n{\n\tprivate String sender, recipient, hostName;\n\n\tpublic EmailClient(String nSender, String nRecipient, String nHost)\n\t{\n\t\tsender = nSender;\n\t\trecipient = nRecipient;\n\t\thostName = nHost;\n\t}\n\n\tpublic void sendMail(String subject, String message)\n\t{\n\t\ttry\n\t\t{\n\t\t\tSocket s1=null;\n\t\t\tInputStream\tis = null;\n\t\t\tOutputStream os = null;\n\n\t\t\tDataOutputStream  = null;\n\n\t\t\ts1 = new Socket(hostName,25);\n\t\t\tis = s1.getInputStream();\n\t\t\tos = s1.getOutputStream();\n\n\t\t\tbd = new DataOutputStream(os);\n\n\t\t\tBufferedReader response = new BufferedReader(new InputStreamReader(is));\n\n\t\t\tbd.writeBytes("HELO "+ InetAddress.getLocalHost().getHostName() + "\\r\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\n\t\t\tbd.writeBytes("MAIL FROM:"+sender+"\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\n\t\t\tbd.writeBytes("RCPT :"+recipient+"\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\n\t\t\tbd.writeBytes("data"+"\\n");\n\n\t\t\tbd.writeBytes("Subject:"+subject+"\\n");\n\n\t\t\tbd.writeBytes(message+"\\n.\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\t\t}\n\n\t\tcatch (UnknownHostException badUrl)\n\t\t{\n\t\t\tSystem.out.println("Host unknown.");\n\t\t}\n\n\t\tcatch (EOFException eof)\n\t\t{\n\t\t\tSystem.out.println("<EOF>");\n\t\t}\n\t\tcatch (Exception e)\n\t\t{\n\t\t\tSystem.out.println("got exception: "+e);\n\t\t}\n\t}\n\n\tprivate static void\twaitForSuccessResponse(BufferedReader response) throws IOException\n\t{\n\t\tString rsp;\n\t\tboolean r250 = false;\n\n\t\twhile( ! r250 )\n\t\t{\n\t\t\trsp = response.readLine().trim();\n\n\t\t\tif(rsp.startsWith("250"))\n\t\t\t\tr250 = true;\n\t\t}\n\n\t}\n}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 33,411 training samples
 - Columns: 
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 51 tokens
 - mean: 444.12 tokens
 - max: 512 tokens
 
- min: 54 tokens
 - mean: 462.06 tokens
 - max: 512 tokens
 
- 0: ~99.80%
 - 1: ~0.20%
 
 - Samples:
sentence_0 sentence_1 label 
import java.net.;
import java.io.;
import java.Runtime;
public class WatchDog{
public WatchDog(){}
public void copyTo(){
}
public static void main(String[] args) throws Exception {
WatchDog wd= new WatchDog();
SendEMail t = new SendEMail();
PrintWriter pw=null;
URL url = new URL("http://www.cs.rmit.edu./students");
URLConnection yc = url.openConnection();
System.out.println("Connection opened...");
BufferedReader in = new BufferedReader(new InputStreamReader(yc.getInputStream()));
String inputLine;
try{
pw=new PrintWriter(new FileOutputStream("newHtml"));
while ((inputLine = in.readLine()) != null){
pw.println(inputLine);
}
pw.save();
}catch(IOException e){
System.out.println("Error saving the file");
}
Process p = Runtime.getRuntime().exec("diff -b newHtml oldHtml");
...
import java.io.;
import java.net.;
import java.;
import java.util.;
public class DictionaryAttack
{
public static void main ( String args[])
{
String function,pass,temp1;
int count =0;
try{
FileReader fr = new FileReader("words.txt");
BufferedReader bfread = new BufferedReader(fr);
Runtime rtime = Runtime.getRuntime();
Process prs = null;
while(( bf = bfread.readLine()) != null)
{
if( f.length() < 4 )
{
System.out.println(+ " The Attack Number =====>" + count++ );
pass = f;
function ="wget --http-user= --http-passwd="+pass+" http://sec-crack.cs.rmit.edu./SEC/2/";
prs = rtime.exec(function);
InputStreamReader stre = new InputStreamReader(prs.getErrorStream());
BufferedReader bread = new BufferedReader(stre);
while( (temp1 = bread.readLine())!= null)
{
System.out.println(temp1);
if(temp1.equals("HTTP request sent, awaiting resp...0
import java.net.;
import java.io.;
import java.util.;
public class WatchDog
{
public WatchDog()
{
}
public static void main(String[] args)
{
try
{
if( args.length != 2 )
{
System.out.println("USAGE: java WatchDog ");
System.exit(0);
}
Runtime.getRuntime().exec("rm LastWatch.html");
Runtime.getRuntime().exec("rm WatchDog.ini");
Thread.sleep(1000);
while (true)
{
WatchDog myWatchDog = new WatchDog();
myWatchDog.readHTML(args[0], args[1]);
Runtime.getRuntime().exec("rm Report.txt");
Runtime.getRuntime().exec("rm diffReport.txt");
Runtime.getRuntime().exec("rm NewWatch.txt");
System.out.println(" check after 2 ... press Ctrl-Z suspend WatchDog...");
Thread.sleep(260*1000);
}
...
import java.net.;
import java.io.;
class MyAuthenticator extends Authenticator {
String password;
public MyAuthenticator(String pwdin) {
password = pwdin;
}
protected PasswordAuthentication getPasswordAuthentication(){
String pwd = password;
return new PasswordAuthentication("",pwd.toCharArray());
}
}0
import java.Runtime;
import java.io.*;
public class differenceFile
{
StringWriter sw =null;
PrintWriter pw = null;
public differenceFile()
{
sw = new StringWriter();
pw = new PrintWriter();
}
public String compareFile()
{
try
{
Process = Runtime.getRuntime().exec("diff History.txt Comparison.txt");
InputStream write = sw.getInputStream();
BufferedReader bf = new BufferedReader (new InputStreamReader(write));
String line;
while((line = bf.readLine())!=null)
pw.println(line);
if((sw.toString().trim()).equals(""))
{
System.out.println(" difference");
return null;
}
System.out.println(sw.toString().trim());
}catch(Exception e){}
return sw.toString().trim();
}
}
public class HoldSharedData
{
private int numOfConnections = 0;
private int startTime;
private int totalTime = 0;
private String[] password;
private int pwdCount;
public HoldSharedData( int time, String[] pwd, int count )
{
startTime = time;
password = pwd;
pwdCount = count;
}
public int getPwdCount()
{
return pwdCount;
}
public void setNumOfConnections( )
{
numOfConnections ++;
}
public int getNumOfConnections()
{
return numOfConnections;
}
public int getStartTime()
{
return startTime;
}
public void setTotalTime( int newTotalTime )
{
totalTime = newTotalTime;
}
public int getTotalTime()
{
return totalTime;
}
public String getPasswordAt( int index )
{
return password[index];
}
}0 - Loss: 
BatchAllTripletLoss 
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | 
|---|---|---|
| 0.2393 | 500 | 0.2031 | 
| 0.4787 | 1000 | 0.1761 | 
| 0.7180 | 1500 | 0.1914 | 
| 0.9574 | 2000 | 0.2044 | 
Framework Versions
- Python: 3.11.13
 - Sentence Transformers: 4.1.0
 - Transformers: 4.52.4
 - PyTorch: 2.6.0+cu124
 - Accelerate: 1.7.0
 - Datasets: 3.6.0
 - Tokenizers: 0.21.1
 
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
- Downloads last month
 - -
 
Model tree for buelfhood/SOCO-Java-CodeBERTa-ST-1
Base model
huggingface/CodeBERTa-small-v1