mokady's picture
Update README.md
7da3d14 verified
|
raw
history blame
8.07 kB
metadata
license_name: bria-2.3
license: other
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
library_name: diffusers
inference: false
tags:
  - text-to-image
  - legal liability
  - commercial use
extra_gated_description: >-
  Model weights from BRIA AI can be obtained with the purchase of a commercial
  license. Fill in the form below and we reach out to you.
extra_gated_heading: Fill in this form to request a commercial license for the model
extra_gated_fields:
  Name: text
  Company/Org name: text
  Org Type (Early/Growth Startup, Enterprise, Academy): text
  Role: text
  Country: text
  Email: text
  By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox

BRIA 2.3 ControlNet Inpainting Fast

Trained exclusively on the largest multi-source commercial-grade licensed dataset, BRIA 2.3 inpainting guarantees best quality while safe for commercial use. The model provides full legal liability coverage for copyright and privacy infrigement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy infringing content.

BRIA 2.3 is an inpainting model designed to fill masked regions in images based on user-provided textual prompts. The model can be applied in different scenarios, including object removal, replacement, addition, and modification within an image, while also possessing the capability to expand the image.

What's New

BRIA 2.3 ControlNet Inpainting can be applied on top of BRIA 2.3 Text-to-Image and therefore enable to use Fast-LORA. This results in extremely fast inpainting model, requires only 1.6s using A10 GPU.

Model Description

  • Developed by: BRIA AI
  • Model type: Latent diffusion image-to-image model
  • License: bria-2.3 inpainting Licensing terms & conditions.
  • Purchase is required to license and access the model.
  • Model Description: BRIA 2.3 inpainting was trained exclusively on a professional-grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage.
  • Resources for more information: BRIA AI

Get Access to the source code and pre-trained model

Interested in BRIA 2.3 inpainting? Our Model is available for purchase.

Purchasing access to BRIA 2.3 inpainting ensures royalty management and full liability for commercial use.

Are you a startup or a student? We encourage you to apply for our specialized Academia and Startup Programs to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting-edge technology.

Contact us today to unlock the potential of BRIA 2.3 inpainting!

By submitting the form above, you agree to BRIA’s Privacy policy and Terms & conditions.

How To Use

from diffusers import (
    AutoencoderKL,
    StableDiffusionXLControlNetInpaintPipeline,
    LCMScheduler,
)
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel, ControlNetConditioningEmbedding
import os
from torchvision import transforms
import torch
from tqdm import tqdm
import numpy as np
import pandas as pd
from PIL import Image


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")


def get_masked_image(path_to_images_dir, image_name, image, image_mask, width, height):
    image_mask = image_mask # inpaint area is white
    image_mask = add_margins_to_ratio(image_mask, 1.5)
    image_mask = image_mask.resize((width, height)) # object to remove is white (1)
    image_mask_pil = image_mask
    orig_image = np.array(image.convert("RGB")).astype(np.uint8)
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
    assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
    masked_image_to_present = image.copy()
    masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5)  # set as masked pixel
    image[image_mask > 0.5] = 0.5  # set as masked pixel - s.t. will be grey 
    image = Image.fromarray((image * 255.0).astype(np.uint8))
    masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
    return image, image_mask_pil, masked_image_to_present


img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((1024, 1024))
mask_image = download_image(mask_url).resize((1024, 1024))

# Load, init model
controlnet = ControlNetModel().from_config('briaai/DEV-ControlNetInpaintingFast', torch_dtype=torch.float16)          
controlnet.controlnet_cond_embedding = ControlNetConditioningEmbedding(
    conditioning_embedding_channels=320,
    conditioning_channels = 5
)   
    
controlnet.load_state_dict(torch.load(local_ckpt_dir + local_ckpt_dir_suffix))
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)

pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
        pipe.fuse_lora()

pipe = pipe.to('cuda:0')
pipe.enable_xformers_memory_efficient_attention()

generator = torch.Generator(device='cuda:0').manual_seed(123456)




vae = pipe.vae

masked_image, image_mask, masked_image_to_present = get_masked_image(path_to_images_dir, image_name, image_mask, img, width, height)
masked_image_tensor = image_transforms(masked_image)
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5

masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
# masked_image_tensor = masked_image_tensor.permute((0,3,1,2))
control_latents = vae.encode(  
        masked_image_tensor[:, :3, :, :].to(vae.dtype)
    ).latent_dist.sample()   
control_latents = control_latents * vae.config.scaling_factor 


image_mask = np.array(image_mask)[:,:]
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
# binarize the mask
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)       

if normalize_mask_to_0_1:
    mask_tensor = mask_tensor / 255.0

mask_tensor = mask_tensor.to(device="cuda")
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
# mask_resized = mask_resized.to(torch.float16)
masked_image = torch.cat([control_latents, mask_resized], dim=1)

gen_img = pipe(negative_prompt=default_negative_prompt, prompt=caption, 
            controlnet_conditioning_sale=1.0, 
            num_inference_steps=12, 
            height=height, width=width, 
            image = masked_image, # control image
            init_image = img,     
            mask_image = mask_tensor,
            guidance_scale = 1.2,
            generator=generator).images[0]






prompt = "A park bench"
generator = torch.Generator(device='cuda:0').manual_seed(123456)
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image,generator=generator,guidance_scale=5,strength=1).images[0]
image.save("./a_park_bench.png")