SPLADE Sparse Encoder

This is a SPLADE Sparse Encoder model finetuned from almanach/moderncamembert-cv2-base on the french_sts dataset using the sentence-transformers library. It maps sentences & paragraphs to a 32768-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: almanach/moderncamembert-cv2-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 32768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: fr

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertForMaskedLM'})
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 32768})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("bourdoiscatie/SPLADE_moderncamembert_STS")
# Run inference
sentences = [
    "Oui, je peux vous dire d'après mon expérience personnelle qu'ils ont certainement sifflé.",
    "Il est vrai que les bombes de la Seconde Guerre mondiale faisaient un bruit de sifflet lorsqu'elles tombaient.",
    "J'envisage de dépenser les 48 dollars par mois pour le système GTD (Getting things done) annoncé par David Allen.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 32768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.2788, 0.1010],
#         [0.2788, 1.0000, 0.0000],
#         [0.1010, 0.0000, 1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.6391 0.6476
spearman_cosine 0.6356 0.5929
active_dims 13.7024 17.2084
sparsity_ratio 0.9996 0.9995

Training Details

Training Dataset

french_sts

  • Dataset: french_sts at 47128cc
  • Size: 12,227 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 11.57 tokens
    • max: 30 tokens
    • min: 6 tokens
    • mean: 11.62 tokens
    • max: 35 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un avion est en train de décoller. Un avion est en train de décoller. 1.0
    Un homme est en train de fumer. Un homme fait du patinage. 0.10000000149011612
    Une personne jette un chat au plafond. Une personne jette un chat au plafond. 1.0
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')",
        "document_regularizer_weight": 0.003
    }
    

Evaluation Dataset

french_sts

  • Dataset: french_sts at 47128cc
  • Size: 3,526 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 18.54 tokens
    • max: 48 tokens
    • min: 6 tokens
    • mean: 18.5 tokens
    • max: 52 tokens
    • min: 0.0
    • mean: 0.43
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un homme avec un casque de sécurité est en train de danser. Un homme portant un casque de sécurité est en train de danser. 1.0
    Un jeune enfant monte à cheval. Un enfant monte à cheval. 0.949999988079071
    Un homme donne une souris à un serpent. L'homme donne une souris au serpent. 1.0
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')",
        "document_regularizer_weight": 0.003
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine sts-test_spearman_cosine
-1 -1 - - 0.4346 -
0.1307 100 0.1768 - - -
0.2614 200 0.0464 - - -
0.3922 300 0.0421 - - -
0.5229 400 0.043 - - -
0.6536 500 0.0424 - - -
0.7843 600 0.0449 - - -
0.9150 700 0.0428 - - -
1.0 765 - 0.0636 0.5774 -
1.0458 800 0.0493 - - -
1.1765 900 0.0479 - - -
1.3072 1000 0.0435 - - -
1.4379 1100 0.0445 - - -
1.5686 1200 0.0365 - - -
1.6993 1300 0.0378 - - -
1.8301 1400 0.0411 - - -
1.9608 1500 0.0362 - - -
2.0 1530 - 0.0634 0.6332 -
2.0915 1600 0.0338 - - -
2.2222 1700 0.0302 - - -
2.3529 1800 0.0303 - - -
2.4837 1900 0.0295 - - -
2.6144 2000 0.027 - - -
2.7451 2100 0.0238 - - -
2.8758 2200 0.0244 - - -
3.0 2295 - 0.0617 0.6356 -
-1 -1 - - - 0.5929

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 5.0.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 2.16.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}
Downloads last month
23
Safetensors
Model size
136M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for bourdoiscatie/SPLADE_moderncamembert_STS

Finetuned
(5)
this model

Dataset used to train bourdoiscatie/SPLADE_moderncamembert_STS

Evaluation results