Upload PPO LunarLander-v2 trained agent
Browse files- PPO_LunarLander.zip +2 -2
- PPO_LunarLander/data +19 -19
- PPO_LunarLander/policy.optimizer.pth +1 -1
- PPO_LunarLander/policy.pth +1 -1
- PPO_LunarLander/system_info.txt +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
PPO_LunarLander.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7193193f4335331f7852a946d8f317487a0674df6f71ea9540be0769c430737
|
3 |
+
size 144100
|
PPO_LunarLander/data
CHANGED
@@ -4,27 +4,27 @@
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
-
"
|
28 |
8
|
29 |
],
|
30 |
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
@@ -35,9 +35,9 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
-
"
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +69,7 @@
|
|
69 |
"_current_progress_remaining": -0.004885333333333408,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e70676680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e70676710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e706767a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e70676830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3e706768c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3e70676950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e706769e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3e70676a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e70676b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e70676b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e70676c20>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3e706b6c30>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
8
|
29 |
],
|
30 |
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1657035378.977684,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAFpaFPuWoOD5X9JG+gDl5vs+JjjxO83y9AAAAAAAAAAD63QI+w5xqO2BhtL1Ufh68uYLSPKKTDr0AAIA/AACAP20VHL6Dj0y8cM6Yuwd6Mro148U9Y7sSOwAAgD8AAIA/GmuOvfOvuT6D7wW9puHTvsvair3gG3W8AAAAAAAAAADNkS2+rQ37PhVLVD1bCwm/SvAyvgatrDsAAAAAAAAAAJqOEj1kLv89QzjGO53wf74vkow8dZEMvAAAAAAAAAAAkx8kPgHlgrxU8j87ia/wuRfi771m/Lu6AACAPwAAgD8zPhe+wxo/vDnxILsnt0K5+AunPbLGXDoAAIA/AACAP/rwGz7PiT28DVYtPDytsboeZKG9ZeCRuwAAgD8AAIA/Gqcrvmjfkz9QtCO/LvAavyxiQL4aykK+AAAAAAAAAADGBC0+NHdJPzaBgz6QQRO/JpA8Pq7UWT0AAAAAAAAAAKC0Ez7DPE89Op3FvWH3Kb4PGi877SctPQAAAAAAAAAA+hsWvlyOCLyG0kU7e5ofOZGxYD3u5X66AACAPwAAgD+q9E++HQ4LP4vauT3A4AW/luwyvkdzAT4AAAAAAAAAAAaCHz70iIg/WESNPiZNJb8kc/09ZI0QPQAAAAAAAAAAzW52PIcMsj9a5ZY+KSVsvnkv5LvpACY7AAAAAAAAAACUdJRiLg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.004885333333333408,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ6Wg28tccECUhpRSlIwBbJRLtIwBdJRHQJ/PRj/dZaF1fZQoaAZoCWgPQwg/cmvS7UJyQJSGlFKUaBVL+WgWR0Cfz5Nzr/sFdX2UKGgGaAloD0MIi1QYW8hecECUhpRSlGgVS8RoFkdAn8/hXjlxO3V9lChoBmgJaA9DCLly9s6o6XBAlIaUUpRoFUv7aBZHQJ/QoxN7Bwd1fZQoaAZoCWgPQwh7L75oT9pxQJSGlFKUaBVLtmgWR0Cf0LkWAPNFdX2UKGgGaAloD0MIYhBYOfQtcUCUhpRSlGgVS5poFkdAn9FXnp0OmXV9lChoBmgJaA9DCJRQ+kKIK3NAlIaUUpRoFUu3aBZHQJ/RYIqslsx1fZQoaAZoCWgPQwgD0Chdes1xQJSGlFKUaBVLpmgWR0Cf0WBv73wkdX2UKGgGaAloD0MIqyFxj+XicECUhpRSlGgVS49oFkdAn9G3c+JP7HV9lChoBmgJaA9DCCIcs+zJhnBAlIaUUpRoFUuoaBZHQJ/SXtQbdad1fZQoaAZoCWgPQwhETfT5qBNyQJSGlFKUaBVL5WgWR0Cf0pskY4yXdX2UKGgGaAloD0MIzNHj97ZxcECUhpRSlGgVS7poFkdAn9Lxu89Oh3V9lChoBmgJaA9DCBbAlIFDfXFAlIaUUpRoFUvXaBZHQJ/TzU6PsAx1fZQoaAZoCWgPQwgnvtpRXAZyQJSGlFKUaBVLzWgWR0Cf1Do8ZDRddX2UKGgGaAloD0MIBWoxeFiPcECUhpRSlGgVS7ZoFkdAn9S8r7O3UnV9lChoBmgJaA9DCJxqLcwCF3BAlIaUUpRoFUvhaBZHQJ/VS2PT5O91fZQoaAZoCWgPQwj2JobkZCBzQJSGlFKUaBVLu2gWR0Cf1b4hllK9dX2UKGgGaAloD0MImkF8YMetcECUhpRSlGgVS79oFkdAn9XF3IMjNnV9lChoBmgJaA9DCGA+WTGc8HJAlIaUUpRoFU0MAWgWR0Cf1um78Nx3dX2UKGgGaAloD0MI4IYYr3kPcUCUhpRSlGgVS5VoFkdAn9c/I0ZWJnV9lChoBmgJaA9DCH+IDRZObXFAlIaUUpRoFUvoaBZHQJ/X4Kv3ai91fZQoaAZoCWgPQwhWYp6VdIxxQJSGlFKUaBVLwmgWR0Cf1/T7EYO2dX2UKGgGaAloD0MIliTP9f02cUCUhpRSlGgVS71oFkdAn9giDdxhlXV9lChoBmgJaA9DCN/8hokGJXJAlIaUUpRoFUv0aBZHQJ/YVVrAP/d1fZQoaAZoCWgPQwg8TWa8rapxQJSGlFKUaBVNAAFoFkdAn9i3xnWat3V9lChoBmgJaA9DCHKMZI9QwW9AlIaUUpRoFUunaBZHQJ/ZS1KGtZF1fZQoaAZoCWgPQwgu/rYnCGlwQJSGlFKUaBVLiWgWR0Cf2Xv+OwPidX2UKGgGaAloD0MIlBeZgN8Ob0CUhpRSlGgVS79oFkdAn9mKKUFB6nV9lChoBmgJaA9DCAzmr5A58W5AlIaUUpRoFUuUaBZHQJ/aN36hxo91fZQoaAZoCWgPQwgcl3FTgxJwQJSGlFKUaBVLrWgWR0Cf2uxjJ+2FdX2UKGgGaAloD0MIQWFQptH8bkCUhpRSlGgVS6doFkdAn9xIC+10DHV9lChoBmgJaA9DCDY656e4UnFAlIaUUpRoFUu5aBZHQJ/dnt4RmK91fZQoaAZoCWgPQwgFhqxuddtkQJSGlFKUaBVN6ANoFkdAn92TXJ5miHV9lChoBmgJaA9DCIcYr3lVz29AlIaUUpRoFUucaBZHQJ/eL8cdYGN1fZQoaAZoCWgPQwhmE2BYfsVkQJSGlFKUaBVN6ANoFkdAn955W/8EV3V9lChoBmgJaA9DCNKJBFNNX3FAlIaUUpRoFUv5aBZHQJ/evJwKjSJ1fZQoaAZoCWgPQwiB7WDEPmZvQJSGlFKUaBVLx2gWR0Cf3uyprDZUdX2UKGgGaAloD0MIX7hzYeQgckCUhpRSlGgVS9xoFkdAn98BnjABUHV9lChoBmgJaA9DCJP8iF+xrkZAlIaUUpRoFUtiaBZHQJ/fgHQhOgx1fZQoaAZoCWgPQwigT+RJUqxyQJSGlFKUaBVLx2gWR0Cf37iILw4LdX2UKGgGaAloD0MI0LcFS7WHcECUhpRSlGgVS/BoFkdAn9+73wkPc3V9lChoBmgJaA9DCAZ/v5itmHJAlIaUUpRoFU0AAWgWR0Cf395gPVd5dX2UKGgGaAloD0MIE5m5wCVUcUCUhpRSlGgVS9ZoFkdAn+AMIJJGv3V9lChoBmgJaA9DCDUomgcw1W9AlIaUUpRoFUvwaBZHQJ/hcnF5v991fZQoaAZoCWgPQwiADvPlxeZwQJSGlFKUaBVL6GgWR0Cf4eIyj59FdX2UKGgGaAloD0MIh9uhYfErcECUhpRSlGgVS6JoFkdAn+Iw8SwnpnV9lChoBmgJaA9DCDElkuhlc3BAlIaUUpRoFUu1aBZHQJ/jL1Gsmv51fZQoaAZoCWgPQwhUNUHUfQJwQJSGlFKUaBVLq2gWR0Cf46WkrPMTdX2UKGgGaAloD0MIJbIPsqyxb0CUhpRSlGgVS5hoFkdAn+PazRhMJ3V9lChoBmgJaA9DCMCuJk/ZuXBAlIaUUpRoFUvCaBZHQJ/kRBY3eep1fZQoaAZoCWgPQwiYp3NFaWhyQJSGlFKUaBVLtmgWR0Cf5IYQJ5VwdX2UKGgGaAloD0MIlEvjF57bcECUhpRSlGgVS9toFkdAn+SXaakRBnV9lChoBmgJaA9DCO5aQj6ozHNAlIaUUpRoFUv6aBZHQJ/kviEQGwB1fZQoaAZoCWgPQwiu2cpLvg5xQJSGlFKUaBVLtmgWR0Cf5O/jbSJCdX2UKGgGaAloD0MIARdky7KVcECUhpRSlGgVS+FoFkdAn+UEqMFUynV9lChoBmgJaA9DCImV0chnnm9AlIaUUpRoFUvEaBZHQJ/lKJEYwZh1fZQoaAZoCWgPQwhTP28qUmxuQJSGlFKUaBVLpWgWR0Cf5n7/GVAzdX2UKGgGaAloD0MIg2xZvq7zb0CUhpRSlGgVS5loFkdAn+Z+TA31jHV9lChoBmgJaA9DCBdJu9GHD3BAlIaUUpRoFUu4aBZHQJ/mlN7Bwdd1fZQoaAZoCWgPQwggJuFCnvlvQJSGlFKUaBVL+GgWR0Cf5t5bQkX2dX2UKGgGaAloD0MIKhprfyctcECUhpRSlGgVS8toFkdAn+jPSc9W63V9lChoBmgJaA9DCOBnXDjQr3BAlIaUUpRoFUu2aBZHQJ/o4PnSv1V1fZQoaAZoCWgPQwj0+pP4HLJyQJSGlFKUaBVLomgWR0Cf6Uyy2QXAdX2UKGgGaAloD0MIF3/bEySWcUCUhpRSlGgVS61oFkdAn+lLowEhaHV9lChoBmgJaA9DCMNhaeDHe29AlIaUUpRoFUvCaBZHQJ/plHww0wd1fZQoaAZoCWgPQwgHKA01SotyQJSGlFKUaBVLvmgWR0Cf6eOEM9bHdX2UKGgGaAloD0MINV66SczFckCUhpRSlGgVS/FoFkdAn+pXlKbrknV9lChoBmgJaA9DCAVsByO2NnJAlIaUUpRoFUvjaBZHQJ/qxWLgn+h1fZQoaAZoCWgPQwjEsS5uI+FxQJSGlFKUaBVLzmgWR0Cf6s0Qsf7rdX2UKGgGaAloD0MIgnSxaWVLcUCUhpRSlGgVS65oFkdAn+tniaRZEHV9lChoBmgJaA9DCN8xPPZzhXBAlIaUUpRoFUvvaBZHQJ/rjTlT3qR1fZQoaAZoCWgPQwhFLjiDv31xQJSGlFKUaBVLpWgWR0Cf7jMlC1JEdX2UKGgGaAloD0MIDyvc8lEzcUCUhpRSlGgVS5xoFkdAn+5BGhEjPnV9lChoBmgJaA9DCCuJ7INsnHBAlIaUUpRoFUu4aBZHQJ/uSO6unuR1fZQoaAZoCWgPQwh6Nqs+V/9iQJSGlFKUaBVN6ANoFkdAn+63BxgiNnV9lChoBmgJaA9DCMqpnWHq5nFAlIaUUpRoFU0PAWgWR0Cf7sV9Wp6ydX2UKGgGaAloD0MIe4MvTCb4bkCUhpRSlGgVS5JoFkdAn+7Gqo60Y3V9lChoBmgJaA9DCKUsQxzr2W5AlIaUUpRoFUuuaBZHQJ/vGoLofSx1fZQoaAZoCWgPQwjQQgJGV4JyQJSGlFKUaBVL62gWR0Cf8ELk0aZQdX2UKGgGaAloD0MIJh3lYHbLcUCUhpRSlGgVS8NoFkdAn/FaxcE/0XV9lChoBmgJaA9DCML4adzb/XJAlIaUUpRoFUvaaBZHQJ/xYfvF3px1fZQoaAZoCWgPQwhKz/QSY7dkQJSGlFKUaBVN6ANoFkdAn/IY82aUinV9lChoBmgJaA9DCFX7dDzmVXFAlIaUUpRoFUv7aBZHQJ/yZhKDkEN1fZQoaAZoCWgPQwgd5ssLcCNxQJSGlFKUaBVLrmgWR0Cf82p0OmSAdX2UKGgGaAloD0MI8Gq5M1PucUCUhpRSlGgVS75oFkdAn/P3Zf2K23V9lChoBmgJaA9DCLVug9ovInBAlIaUUpRoFUvKaBZHQJ/0TrKNhmZ1fZQoaAZoCWgPQwjLSpNSkElyQJSGlFKUaBVLu2gWR0Cf9LwLE1l5dX2UKGgGaAloD0MIjj17LhPackCUhpRSlGgVS+doFkdAn/WnNHH3lHV9lChoBmgJaA9DCMDMd/ATlXFAlIaUUpRoFUvoaBZHQJ/1vW7OE/V1fZQoaAZoCWgPQwjzkZT08DFxQJSGlFKUaBVLmWgWR0Cf9gDO1OTJdX2UKGgGaAloD0MIdQZGXtZMb0CUhpRSlGgVS5toFkdAn/bH889wFXV9lChoBmgJaA9DCBNhw9NrNnJAlIaUUpRoFUvoaBZHQJ/3VvtMPBl1fZQoaAZoCWgPQwi6L2e2qyxzQJSGlFKUaBVL62gWR0Cf+HtPYWcjdX2UKGgGaAloD0MImEwVjAovcUCUhpRSlGgVS6doFkdAn/kwyqMm4XV9lChoBmgJaA9DCMR3YtZLonFAlIaUUpRoFUvKaBZHQJ/5tqQA+6l1fZQoaAZoCWgPQwhMi/ok95hyQJSGlFKUaBVNzgFoFkdAn/m/QF9roHV9lChoBmgJaA9DCCcVjbU/RXJAlIaUUpRoFUu+aBZHQJ/6PvOQhfV1fZQoaAZoCWgPQwgIclDCDPZxQJSGlFKUaBVLtGgWR0Cf+lwQUYbbdX2UKGgGaAloD0MI5pZWQyI+cECUhpRSlGgVS55oFkdAn/ryCjDbanV9lChoBmgJaA9DCOoFn+bkVHBAlIaUUpRoFUu4aBZHQJ/7fxwyZa51ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
PPO_LunarLander/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af528179dad9730409c5d547c7c58f738c2ef310d513d9f0d1d663bfe41074b
|
3 |
size 84893
|
PPO_LunarLander/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80b5f60ee0d4b5ff72c6a4f0930ebfa2c2c9488faf74f9c616ba0e1c2dfa001f
|
3 |
size 43201
|
PPO_LunarLander/system_info.txt
CHANGED
@@ -4,4 +4,4 @@ Stable-Baselines3: 1.5.0
|
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
GPU Enabled: True
|
6 |
Numpy: 1.21.6
|
7 |
-
Gym: 0.
|
|
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
GPU Enabled: True
|
6 |
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 271.74 +/- 12.54
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6d1d904950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6d1d9049e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6d1d904a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6d1d904b00>", "_build": "<function ActorCriticPolicy._build at 0x7f6d1d904b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f6d1d904c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6d1d904cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6d1d904d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6d1d904dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6d1d904e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6d1d904ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6d1d941e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwgEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwiFlGgKiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgSaBRLAIWUaBaHlFKUKEsBSwiFlGgqiUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656686514.58177, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgBE8PW7stD/URYo++VtFvvf2ejyFu6k9AAAAAAAAAACNiww+BRMkPsUsZr4QGZ2+VmL7vNXw5bwAAAAAAAAAAB0MZL56sZY/xVHmvrK38b5gkby+qG5vvgAAAAAAAAAAYPYTvh8d9bv4MBO7dUYfuZ7cXT3iukA6AACAPwAAgD+gWQa+xGeRPioiBz6lhrG+IgLAvGl8Ez0AAAAAAAAAAMABwT2LDdk+DbqqvbVW1b4QPGS7osNpPQAAAAAAAAAAE5VBPkf2dz52F8++NZedvgJ99L1KZKw8AAAAAAAAAACm40u+WnFjP/My0L2gyeu+LpUwvvs+/7oAAAAAAAAAAM0MV73SXK0/sEhUviIX175Bxli9m7g0vQAAAAAAAAAAmtnTux9N0blctsu6ZjlCNtXNyToI2uw5AACAPwAAgD/a48Y9i1OsP12MoD5Mh/e+3t0GPjIz4j0AAAAAAAAAADPTXLzygVQ/Or55PVFQC7+cuWQ8IdGpPQAAAAAAAAAAMxGFPWOXuz/pAAQ/HIpmPWkeijxC4QA+AAAAAAAAAACAAsi9svdUPsAQ4z3cYa2+KAJsvMCl1TwAAAAAAAAAALrZCz5E2tY+DhbJvpV9vL5uL1y9xXx1vQAAAAAAAAAAjcmdvek/xj66gVM91UO8vqZkGr0obhs8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8MLWbCWbcUCUhpRSlIwBbJRLxowBdJRHQL6CLr4Fia11fZQoaAZoCWgPQwjvkGKARBtxQJSGlFKUaBVL2WgWR0C+gjyFXaJzdX2UKGgGaAloD0MIhsjp67kzcUCUhpRSlGgVS9xoFkdAvoJUox59mnV9lChoBmgJaA9DCFgczvyqO3BAlIaUUpRoFUvLaBZHQL6CaekYXO51fZQoaAZoCWgPQwjII7iRsr9xQJSGlFKUaBVL1WgWR0C+goLdWQwLdX2UKGgGaAloD0MIs7eU88VbcUCUhpRSlGgVS9loFkdAvoKUHQhOg3V9lChoBmgJaA9DCGU5CaWvjm9AlIaUUpRoFUvZaBZHQL6CuVsUIs11fZQoaAZoCWgPQwidRloq73VxQJSGlFKUaBVL22gWR0C+gtycwxnGdX2UKGgGaAloD0MI1zTvOEWWb0CUhpRSlGgVS8loFkdAvoLhw2l2vHV9lChoBmgJaA9DCJMa2gDs7HFAlIaUUpRoFUvraBZHQL6C434bjtJ1fZQoaAZoCWgPQwiPpnoy//1wQJSGlFKUaBVNAAFoFkdAvoL3VUdaMnV9lChoBmgJaA9DCCdO7neosXBAlIaUUpRoFUvTaBZHQL6DCZpi7TV1fZQoaAZoCWgPQwhuxJPdzJFkQJSGlFKUaBVN6ANoFkdAvoMOBMBZIXV9lChoBmgJaA9DCIM0Y9F03HJAlIaUUpRoFUvpaBZHQL6DNshPj4p1fZQoaAZoCWgPQwgfFJSiFeJuQJSGlFKUaBVLxGgWR0C+g0LrLQokdX2UKGgGaAloD0MIcsCuJo/tcECUhpRSlGgVS9toFkdAvoNK0D2alXV9lChoBmgJaA9DCNKm6h7Z+21AlIaUUpRoFUvWaBZHQL6DgVII4VB1fZQoaAZoCWgPQwhsy4CzlI5yQJSGlFKUaBVL9GgWR0C+g5K4+bExdX2UKGgGaAloD0MIYkhOJq4UcUCUhpRSlGgVS9doFkdAvoOaU+s5n3V9lChoBmgJaA9DCNdoOdCDe3JAlIaUUpRoFUvfaBZHQL6D07fYSQJ1fZQoaAZoCWgPQwjxgojUdH1yQJSGlFKUaBVLy2gWR0C+g9oIa99MdX2UKGgGaAloD0MIoSx8fS1ib0CUhpRSlGgVS9FoFkdAvoQGPtD2J3V9lChoBmgJaA9DCPEuF/GdrXJAlIaUUpRoFUvXaBZHQL6EFQzk6tF1fZQoaAZoCWgPQwj/6nHfajtuQJSGlFKUaBVL0GgWR0C+hCIxtYSydX2UKGgGaAloD0MIf6FHjF7KcECUhpRSlGgVS+JoFkdAvoRUVsUIs3V9lChoBmgJaA9DCJj8T/5uyXJAlIaUUpRoFU0EAWgWR0C+hF+GwiaBdX2UKGgGaAloD0MIjZYDPVSvcUCUhpRSlGgVS+toFkdAvoRnoouwo3V9lChoBmgJaA9DCOBIoMFmVnBAlIaUUpRoFUviaBZHQL6EixhlUZN1fZQoaAZoCWgPQwix3NJqSBhwQJSGlFKUaBVL7mgWR0C+hK7RF7UodX2UKGgGaAloD0MIwZDVrd7scUCUhpRSlGgVS89oFkdAvoTa6PKdQXV9lChoBmgJaA9DCMTRVbo7D3BAlIaUUpRoFUvaaBZHQL6E9h5PdmB1fZQoaAZoCWgPQwjSONTvwkFyQJSGlFKUaBVL/WgWR0C+hRNaY/mldX2UKGgGaAloD0MIdt8xPPa3cECUhpRSlGgVS9VoFkdAvoUtFnZkCnV9lChoBmgJaA9DCAx3Loz093JAlIaUUpRoFUvTaBZHQL6FMRISUTt1fZQoaAZoCWgPQwiDhZM0P0xyQJSGlFKUaBVLvGgWR0C+hUnfqHGkdX2UKGgGaAloD0MI3IE65ZGfcECUhpRSlGgVS91oFkdAvoVwrK/203V9lChoBmgJaA9DCGx4eqVsWXFAlIaUUpRoFUu6aBZHQL6Fkj9n9Nx1fZQoaAZoCWgPQwjMBwQ6k/VxQJSGlFKUaBVL/GgWR0C+hcPlQuVYdX2UKGgGaAloD0MI53Ct9rBDcUCUhpRSlGgVS8BoFkdAvoXOhwl0HXV9lChoBmgJaA9DCM8VpYRgeHFAlIaUUpRoFUvjaBZHQL6F4+36Q/51fZQoaAZoCWgPQwhLBKp/0GdxQJSGlFKUaBVNBgFoFkdAvoYMfhddFHV9lChoBmgJaA9DCCJvufoxTG9AlIaUUpRoFUvRaBZHQL6GQrpqynl1fZQoaAZoCWgPQwisGoS53T5uQJSGlFKUaBVL0WgWR0C+hmCquKXOdX2UKGgGaAloD0MI7dYyGY7kc0CUhpRSlGgVTQIBaBZHQL6Ga43m3fB1fZQoaAZoCWgPQwiZ02UxMU9xQJSGlFKUaBVL1GgWR0C+hqY8EFGHdX2UKGgGaAloD0MIr13acNjecUCUhpRSlGgVS9xoFkdAvoa7leWv83V9lChoBmgJaA9DCBoZ5C5CpHFAlIaUUpRoFUvPaBZHQL6Gv58jRlZ1fZQoaAZoCWgPQwgBUMWNmxhxQJSGlFKUaBVL0WgWR0C+hu+32EkCdX2UKGgGaAloD0MIq7GEtfEXc0CUhpRSlGgVTRoBaBZHQL6HED+irT91fZQoaAZoCWgPQwgmipC6HVpyQJSGlFKUaBVL4WgWR0C+hzIBJZntdX2UKGgGaAloD0MIEOoihXLncECUhpRSlGgVS9toFkdAvodYy8BdU3V9lChoBmgJaA9DCCrhCb1+1G9AlIaUUpRoFUvYaBZHQL6HdEPUayd1fZQoaAZoCWgPQwjsFoGxPj5yQJSGlFKUaBVL72gWR0C+h4hJmNBGdX2UKGgGaAloD0MI/OHnv4cKckCUhpRSlGgVS85oFkdAvoeMU21lXnV9lChoBmgJaA9DCJELzuCv4XFAlIaUUpRoFUvFaBZHQL6HsgpSaVl1fZQoaAZoCWgPQwgZINEEShBxQJSGlFKUaBVNzANoFkdAvofDWYnfEXV9lChoBmgJaA9DCKyMRj4vy3BAlIaUUpRoFUvVaBZHQL6H8KFIuoR1fZQoaAZoCWgPQwhWvJF5pNFyQJSGlFKUaBVLw2gWR0C+iAQi/wiJdX2UKGgGaAloD0MILQWk/Y+2cECUhpRSlGgVS95oFkdAvohAz3yqdnV9lChoBmgJaA9DCJj2zf1V5nJAlIaUUpRoFU0lAWgWR0C+iGugpSaWdX2UKGgGaAloD0MInu3RG27dcECUhpRSlGgVS95oFkdAvoiNgZ0jknV9lChoBmgJaA9DCLPviuD/I29AlIaUUpRoFUv2aBZHQL6Imglnh891fZQoaAZoCWgPQwi0Vx8PPa9wQJSGlFKUaBVL5mgWR0C+iL5pBX0YdX2UKGgGaAloD0MIhCo1e6AAbkCUhpRSlGgVS9ZoFkdAvojhnzxwynV9lChoBmgJaA9DCInt7gE61mRAlIaUUpRoFU3oA2gWR0C+iPv3WWhRdX2UKGgGaAloD0MIH/KWqx+IcUCUhpRSlGgVS+VoFkdAvokO4vvjO3V9lChoBmgJaA9DCJkoQur2HHNAlIaUUpRoFU0GAWgWR0C+iRpZGKAKdX2UKGgGaAloD0MIDJV/LW9RckCUhpRSlGgVS+toFkdAvokciHIp6XV9lChoBmgJaA9DCMS12sNebW9AlIaUUpRoFUvNaBZHQL6JHduHerN1fZQoaAZoCWgPQwiB7WDEvgtyQJSGlFKUaBVL/GgWR0C+iVcGX5WSdX2UKGgGaAloD0MIKgExCRfhb0CUhpRSlGgVS99oFkdAvollKAavR3V9lChoBmgJaA9DCLyuX7CbpXJAlIaUUpRoFUvvaBZHQL6Jj1dgOSZ1fZQoaAZoCWgPQwhOnUfF/3dxQJSGlFKUaBVL1mgWR0C+iaLLIPsidX2UKGgGaAloD0MI5A8GnvsdYUCUhpRSlGgVTegDaBZHQL6J2mgJ1JV1fZQoaAZoCWgPQwgMzuDvV7pyQJSGlFKUaBVL5WgWR0C+iePvWpZPdX2UKGgGaAloD0MIKq2/JQCUcUCUhpRSlGgVS+RoFkdAvon+fJ3gUHV9lChoBmgJaA9DCE2espouHG5AlIaUUpRoFUvPaBZHQL6KBq8lHBl1fZQoaAZoCWgPQwhSf73CAvFyQJSGlFKUaBVL7GgWR0C+ihJ1mrbQdX2UKGgGaAloD0MISicSTPWIcUCUhpRSlGgVS8toFkdAvopEmBvrGHV9lChoBmgJaA9DCASvljvzk3BAlIaUUpRoFUvFaBZHQL6KSBkqc3F1fZQoaAZoCWgPQwhY5NcPsY5yQJSGlFKUaBVLzWgWR0C+ilQx33YddX2UKGgGaAloD0MIGOqwwi0Bc0CUhpRSlGgVS+toFkdAvophkZrHl3V9lChoBmgJaA9DCNRi8DCtvnNAlIaUUpRoFUvcaBZHQL6KZXHR1HR1fZQoaAZoCWgPQwhrSrIOxzB0QJSGlFKUaBVNAwFoFkdAvoptMuez2XV9lChoBmgJaA9DCN3NUx3yg3BAlIaUUpRoFUvIaBZHQL6KfGHYYix1fZQoaAZoCWgPQwg+A+rN6A9zQJSGlFKUaBVL+GgWR0C+isf9gnc+dX2UKGgGaAloD0MItCJqok+Qc0CUhpRSlGgVS/hoFkdAvorzPkaMrHV9lChoBmgJaA9DCJDY7h5gjXJAlIaUUpRoFUvNaBZHQL6LAfGdZq51fZQoaAZoCWgPQwhkBFQ4gp1yQJSGlFKUaBVL2mgWR0C+iwy4FzMidX2UKGgGaAloD0MIhhxbz1BQcUCUhpRSlGgVTQQBaBZHQL6LGUFB6a91fZQoaAZoCWgPQwipM/eQcJNyQJSGlFKUaBVLyWgWR0C+ixly3kPudX2UKGgGaAloD0MI7q8e9604cUCUhpRSlGgVS8loFkdAvoshisny/nV9lChoBmgJaA9DCE0VjEpqe25AlIaUUpRoFUvSaBZHQL6LNsWfseJ1fZQoaAZoCWgPQwjww0FCFKVvQJSGlFKUaBVLzmgWR0C+i1zmW+oMdX2UKGgGaAloD0MIibSNPxH4cECUhpRSlGgVS9RoFkdAvot0er+5v3V9lChoBmgJaA9DCBUCucRRS3FAlIaUUpRoFUvPaBZHQL6LiAiFCcB1fZQoaAZoCWgPQwjdskP8wxpvQJSGlFKUaBVLyGgWR0C+i5ANXo1UdX2UKGgGaAloD0MI2dDN/sAKcECUhpRSlGgVS+NoFkdAvouW3hGYr3V9lChoBmgJaA9DCCpSYWyhYXFAlIaUUpRoFUv/aBZHQL6Loi3G4qh1fZQoaAZoCWgPQwgu/rYnyB9yQJSGlFKUaBVL7WgWR0C+i6ZZKWcCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e70676680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e70676710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e706767a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e70676830>", "_build": "<function ActorCriticPolicy._build at 0x7f3e706768c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3e70676950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e706769e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3e70676a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e70676b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e70676b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e70676c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e706b6c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657035378.977684, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAFpaFPuWoOD5X9JG+gDl5vs+JjjxO83y9AAAAAAAAAAD63QI+w5xqO2BhtL1Ufh68uYLSPKKTDr0AAIA/AACAP20VHL6Dj0y8cM6Yuwd6Mro148U9Y7sSOwAAgD8AAIA/GmuOvfOvuT6D7wW9puHTvsvair3gG3W8AAAAAAAAAADNkS2+rQ37PhVLVD1bCwm/SvAyvgatrDsAAAAAAAAAAJqOEj1kLv89QzjGO53wf74vkow8dZEMvAAAAAAAAAAAkx8kPgHlgrxU8j87ia/wuRfi771m/Lu6AACAPwAAgD8zPhe+wxo/vDnxILsnt0K5+AunPbLGXDoAAIA/AACAP/rwGz7PiT28DVYtPDytsboeZKG9ZeCRuwAAgD8AAIA/Gqcrvmjfkz9QtCO/LvAavyxiQL4aykK+AAAAAAAAAADGBC0+NHdJPzaBgz6QQRO/JpA8Pq7UWT0AAAAAAAAAAKC0Ez7DPE89Op3FvWH3Kb4PGi877SctPQAAAAAAAAAA+hsWvlyOCLyG0kU7e5ofOZGxYD3u5X66AACAPwAAgD+q9E++HQ4LP4vauT3A4AW/luwyvkdzAT4AAAAAAAAAAAaCHz70iIg/WESNPiZNJb8kc/09ZI0QPQAAAAAAAAAAzW52PIcMsj9a5ZY+KSVsvnkv5LvpACY7AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ6Wg28tccECUhpRSlIwBbJRLtIwBdJRHQJ/PRj/dZaF1fZQoaAZoCWgPQwg/cmvS7UJyQJSGlFKUaBVL+WgWR0Cfz5Nzr/sFdX2UKGgGaAloD0MIi1QYW8hecECUhpRSlGgVS8RoFkdAn8/hXjlxO3V9lChoBmgJaA9DCLly9s6o6XBAlIaUUpRoFUv7aBZHQJ/QoxN7Bwd1fZQoaAZoCWgPQwh7L75oT9pxQJSGlFKUaBVLtmgWR0Cf0LkWAPNFdX2UKGgGaAloD0MIYhBYOfQtcUCUhpRSlGgVS5poFkdAn9FXnp0OmXV9lChoBmgJaA9DCJRQ+kKIK3NAlIaUUpRoFUu3aBZHQJ/RYIqslsx1fZQoaAZoCWgPQwgD0Chdes1xQJSGlFKUaBVLpmgWR0Cf0WBv73wkdX2UKGgGaAloD0MIqyFxj+XicECUhpRSlGgVS49oFkdAn9G3c+JP7HV9lChoBmgJaA9DCCIcs+zJhnBAlIaUUpRoFUuoaBZHQJ/SXtQbdad1fZQoaAZoCWgPQwhETfT5qBNyQJSGlFKUaBVL5WgWR0Cf0pskY4yXdX2UKGgGaAloD0MIzNHj97ZxcECUhpRSlGgVS7poFkdAn9Lxu89Oh3V9lChoBmgJaA9DCBbAlIFDfXFAlIaUUpRoFUvXaBZHQJ/TzU6PsAx1fZQoaAZoCWgPQwgnvtpRXAZyQJSGlFKUaBVLzWgWR0Cf1Do8ZDRddX2UKGgGaAloD0MIBWoxeFiPcECUhpRSlGgVS7ZoFkdAn9S8r7O3UnV9lChoBmgJaA9DCJxqLcwCF3BAlIaUUpRoFUvhaBZHQJ/VS2PT5O91fZQoaAZoCWgPQwj2JobkZCBzQJSGlFKUaBVLu2gWR0Cf1b4hllK9dX2UKGgGaAloD0MImkF8YMetcECUhpRSlGgVS79oFkdAn9XF3IMjNnV9lChoBmgJaA9DCGA+WTGc8HJAlIaUUpRoFU0MAWgWR0Cf1um78Nx3dX2UKGgGaAloD0MI4IYYr3kPcUCUhpRSlGgVS5VoFkdAn9c/I0ZWJnV9lChoBmgJaA9DCH+IDRZObXFAlIaUUpRoFUvoaBZHQJ/X4Kv3ai91fZQoaAZoCWgPQwhWYp6VdIxxQJSGlFKUaBVLwmgWR0Cf1/T7EYO2dX2UKGgGaAloD0MIliTP9f02cUCUhpRSlGgVS71oFkdAn9giDdxhlXV9lChoBmgJaA9DCN/8hokGJXJAlIaUUpRoFUv0aBZHQJ/YVVrAP/d1fZQoaAZoCWgPQwg8TWa8rapxQJSGlFKUaBVNAAFoFkdAn9i3xnWat3V9lChoBmgJaA9DCHKMZI9QwW9AlIaUUpRoFUunaBZHQJ/ZS1KGtZF1fZQoaAZoCWgPQwgu/rYnCGlwQJSGlFKUaBVLiWgWR0Cf2Xv+OwPidX2UKGgGaAloD0MIlBeZgN8Ob0CUhpRSlGgVS79oFkdAn9mKKUFB6nV9lChoBmgJaA9DCAzmr5A58W5AlIaUUpRoFUuUaBZHQJ/aN36hxo91fZQoaAZoCWgPQwgcl3FTgxJwQJSGlFKUaBVLrWgWR0Cf2uxjJ+2FdX2UKGgGaAloD0MIQWFQptH8bkCUhpRSlGgVS6doFkdAn9xIC+10DHV9lChoBmgJaA9DCDY656e4UnFAlIaUUpRoFUu5aBZHQJ/dnt4RmK91fZQoaAZoCWgPQwgFhqxuddtkQJSGlFKUaBVN6ANoFkdAn92TXJ5miHV9lChoBmgJaA9DCIcYr3lVz29AlIaUUpRoFUucaBZHQJ/eL8cdYGN1fZQoaAZoCWgPQwhmE2BYfsVkQJSGlFKUaBVN6ANoFkdAn955W/8EV3V9lChoBmgJaA9DCNKJBFNNX3FAlIaUUpRoFUv5aBZHQJ/evJwKjSJ1fZQoaAZoCWgPQwiB7WDEPmZvQJSGlFKUaBVLx2gWR0Cf3uyprDZUdX2UKGgGaAloD0MIX7hzYeQgckCUhpRSlGgVS9xoFkdAn98BnjABUHV9lChoBmgJaA9DCJP8iF+xrkZAlIaUUpRoFUtiaBZHQJ/fgHQhOgx1fZQoaAZoCWgPQwigT+RJUqxyQJSGlFKUaBVLx2gWR0Cf37iILw4LdX2UKGgGaAloD0MI0LcFS7WHcECUhpRSlGgVS/BoFkdAn9+73wkPc3V9lChoBmgJaA9DCAZ/v5itmHJAlIaUUpRoFU0AAWgWR0Cf395gPVd5dX2UKGgGaAloD0MIE5m5wCVUcUCUhpRSlGgVS9ZoFkdAn+AMIJJGv3V9lChoBmgJaA9DCDUomgcw1W9AlIaUUpRoFUvwaBZHQJ/hcnF5v991fZQoaAZoCWgPQwiADvPlxeZwQJSGlFKUaBVL6GgWR0Cf4eIyj59FdX2UKGgGaAloD0MIh9uhYfErcECUhpRSlGgVS6JoFkdAn+Iw8SwnpnV9lChoBmgJaA9DCDElkuhlc3BAlIaUUpRoFUu1aBZHQJ/jL1Gsmv51fZQoaAZoCWgPQwhUNUHUfQJwQJSGlFKUaBVLq2gWR0Cf46WkrPMTdX2UKGgGaAloD0MIJbIPsqyxb0CUhpRSlGgVS5hoFkdAn+PazRhMJ3V9lChoBmgJaA9DCMCuJk/ZuXBAlIaUUpRoFUvCaBZHQJ/kRBY3eep1fZQoaAZoCWgPQwiYp3NFaWhyQJSGlFKUaBVLtmgWR0Cf5IYQJ5VwdX2UKGgGaAloD0MIlEvjF57bcECUhpRSlGgVS9toFkdAn+SXaakRBnV9lChoBmgJaA9DCO5aQj6ozHNAlIaUUpRoFUv6aBZHQJ/kviEQGwB1fZQoaAZoCWgPQwiu2cpLvg5xQJSGlFKUaBVLtmgWR0Cf5O/jbSJCdX2UKGgGaAloD0MIARdky7KVcECUhpRSlGgVS+FoFkdAn+UEqMFUynV9lChoBmgJaA9DCImV0chnnm9AlIaUUpRoFUvEaBZHQJ/lKJEYwZh1fZQoaAZoCWgPQwhTP28qUmxuQJSGlFKUaBVLpWgWR0Cf5n7/GVAzdX2UKGgGaAloD0MIg2xZvq7zb0CUhpRSlGgVS5loFkdAn+Z+TA31jHV9lChoBmgJaA9DCBdJu9GHD3BAlIaUUpRoFUu4aBZHQJ/mlN7Bwdd1fZQoaAZoCWgPQwggJuFCnvlvQJSGlFKUaBVL+GgWR0Cf5t5bQkX2dX2UKGgGaAloD0MIKhprfyctcECUhpRSlGgVS8toFkdAn+jPSc9W63V9lChoBmgJaA9DCOBnXDjQr3BAlIaUUpRoFUu2aBZHQJ/o4PnSv1V1fZQoaAZoCWgPQwj0+pP4HLJyQJSGlFKUaBVLomgWR0Cf6Uyy2QXAdX2UKGgGaAloD0MIF3/bEySWcUCUhpRSlGgVS61oFkdAn+lLowEhaHV9lChoBmgJaA9DCMNhaeDHe29AlIaUUpRoFUvCaBZHQJ/plHww0wd1fZQoaAZoCWgPQwgHKA01SotyQJSGlFKUaBVLvmgWR0Cf6eOEM9bHdX2UKGgGaAloD0MINV66SczFckCUhpRSlGgVS/FoFkdAn+pXlKbrknV9lChoBmgJaA9DCAVsByO2NnJAlIaUUpRoFUvjaBZHQJ/qxWLgn+h1fZQoaAZoCWgPQwjEsS5uI+FxQJSGlFKUaBVLzmgWR0Cf6s0Qsf7rdX2UKGgGaAloD0MIgnSxaWVLcUCUhpRSlGgVS65oFkdAn+tniaRZEHV9lChoBmgJaA9DCN8xPPZzhXBAlIaUUpRoFUvvaBZHQJ/rjTlT3qR1fZQoaAZoCWgPQwhFLjiDv31xQJSGlFKUaBVLpWgWR0Cf7jMlC1JEdX2UKGgGaAloD0MIDyvc8lEzcUCUhpRSlGgVS5xoFkdAn+5BGhEjPnV9lChoBmgJaA9DCCuJ7INsnHBAlIaUUpRoFUu4aBZHQJ/uSO6unuR1fZQoaAZoCWgPQwh6Nqs+V/9iQJSGlFKUaBVN6ANoFkdAn+63BxgiNnV9lChoBmgJaA9DCMqpnWHq5nFAlIaUUpRoFU0PAWgWR0Cf7sV9Wp6ydX2UKGgGaAloD0MIe4MvTCb4bkCUhpRSlGgVS5JoFkdAn+7Gqo60Y3V9lChoBmgJaA9DCKUsQxzr2W5AlIaUUpRoFUuuaBZHQJ/vGoLofSx1fZQoaAZoCWgPQwjQQgJGV4JyQJSGlFKUaBVL62gWR0Cf8ELk0aZQdX2UKGgGaAloD0MIJh3lYHbLcUCUhpRSlGgVS8NoFkdAn/FaxcE/0XV9lChoBmgJaA9DCML4adzb/XJAlIaUUpRoFUvaaBZHQJ/xYfvF3px1fZQoaAZoCWgPQwhKz/QSY7dkQJSGlFKUaBVN6ANoFkdAn/IY82aUinV9lChoBmgJaA9DCFX7dDzmVXFAlIaUUpRoFUv7aBZHQJ/yZhKDkEN1fZQoaAZoCWgPQwgd5ssLcCNxQJSGlFKUaBVLrmgWR0Cf82p0OmSAdX2UKGgGaAloD0MI8Gq5M1PucUCUhpRSlGgVS75oFkdAn/P3Zf2K23V9lChoBmgJaA9DCLVug9ovInBAlIaUUpRoFUvKaBZHQJ/0TrKNhmZ1fZQoaAZoCWgPQwjLSpNSkElyQJSGlFKUaBVLu2gWR0Cf9LwLE1l5dX2UKGgGaAloD0MIjj17LhPackCUhpRSlGgVS+doFkdAn/WnNHH3lHV9lChoBmgJaA9DCMDMd/ATlXFAlIaUUpRoFUvoaBZHQJ/1vW7OE/V1fZQoaAZoCWgPQwjzkZT08DFxQJSGlFKUaBVLmWgWR0Cf9gDO1OTJdX2UKGgGaAloD0MIdQZGXtZMb0CUhpRSlGgVS5toFkdAn/bH889wFXV9lChoBmgJaA9DCBNhw9NrNnJAlIaUUpRoFUvoaBZHQJ/3VvtMPBl1fZQoaAZoCWgPQwi6L2e2qyxzQJSGlFKUaBVL62gWR0Cf+HtPYWcjdX2UKGgGaAloD0MImEwVjAovcUCUhpRSlGgVS6doFkdAn/kwyqMm4XV9lChoBmgJaA9DCMR3YtZLonFAlIaUUpRoFUvKaBZHQJ/5tqQA+6l1fZQoaAZoCWgPQwhMi/ok95hyQJSGlFKUaBVNzgFoFkdAn/m/QF9roHV9lChoBmgJaA9DCCcVjbU/RXJAlIaUUpRoFUu+aBZHQJ/6PvOQhfV1fZQoaAZoCWgPQwgIclDCDPZxQJSGlFKUaBVLtGgWR0Cf+lwQUYbbdX2UKGgGaAloD0MI5pZWQyI+cECUhpRSlGgVS55oFkdAn/ryCjDbanV9lChoBmgJaA9DCOoFn+bkVHBAlIaUUpRoFUu4aBZHQJ/7fxwyZa51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d581cdfa8752b0bcb742753ba0b5dd4fa9fcb1baa7f727722e24306acde33655
|
3 |
+
size 234020
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 271.7354405383377, "std_reward": 12.544146978554853, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-05T16:18:17.940118"}
|