ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4286
- Accuracy: 0.8594
- Precision: 0.8510
- Recall: 0.8736
- F1: 0.8615
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3886 | 1.0 | 714 | 0.4357 | 0.8486 | 0.8387 | 0.8652 | 0.8500 |
0.2971 | 2.0 | 1428 | 0.4018 | 0.8584 | 0.8517 | 0.8699 | 0.8595 |
0.2196 | 3.0 | 2142 | 0.4286 | 0.8594 | 0.8510 | 0.8736 | 0.8615 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for bongbongbong/ynat-model
Base model
monologg/koelectra-base-v3-discriminator