Klasszifikációs modell: a kmdb_classification adathalmazon lett finomhangolva a huBERT modell. A klasszifikáció cím és leírás (lead) alapján történik.
Használat:
import torch
import torch.nn.functional as F
from transformers import BertForSequenceClassification, BertTokenizer
from datasets import load_dataset
model = BertForSequenceClassification.from_pretrained('boapps/kmdb_classification_model')
tokenizer = BertTokenizer.from_pretrained('SZTAKI-HLT/hubert-base-cc')
article = {'title': '400 milliós luxusvillába vette be magát Matolcsy és családja', 'description': 'Matolcsy György fiának cége megvette, Matolcsy György unokatestvérének bankja meghitelezte, Matolcsy György pedig használja a 430 millióért hirdetett II. kerületi luxusrezidenciát.'}
tokenized_article = tokenizer(article['title']+'\n'+article['description'], return_tensors="pt")
logits = model(**tokenized_article).logits
probabilities = F.softmax(logits[0], dim=-1)
print(probabilities)
Eredmények
precision: 0.739 recall: 0.950 accuracy: 0.963