indonesian-hate-speech-bert

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3245
  • Accuracy: 0.8808
  • F1: 0.8808
  • Precision: 0.8808
  • Recall: 0.8808
  • Precision Non Hate: 0.8954
  • Precision Hate: 0.8609
  • Recall Non Hate: 0.8978
  • Recall Hate: 0.8578

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Precision Non Hate Precision Hate Recall Non Hate Recall Hate
0.3074 1.3618 200 0.2969 0.8817 0.8818 0.8820 0.8817 0.9020 0.8549 0.8915 0.8685
0.1442 2.7235 400 0.3146 0.8933 0.8933 0.8933 0.8933 0.9080 0.8733 0.9065 0.8753
0.0699 4.0819 600 0.4224 0.8875 0.8874 0.8874 0.8875 0.9003 0.8699 0.9048 0.8639

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
124M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for blacklotusid/id-hs-indobert

Quantized
(2)
this model