Image Feature Extraction
Birder
PyTorch

Model Card for vit_reg4_m16_rms_avg_i-jepa-imagenet21k

A ViT image classification model. The model follows a two-stage training process: first, I-JEPA pretraining, then fine-tuned on the ImageNet-21K dataset.

Model Details

Model Usage

Image Classification

import birder
from birder.inference.classification import infer_image

(net, model_info) = birder.load_pretrained_model("vit_reg4_m16_rms_avg_i-jepa-imagenet21k", inference=True)

# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)

# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)

image = "path/to/image.jpeg"  # or a PIL image, must be loaded in RGB format
(out, _) = infer_image(net, image, transform)
# out is a NumPy array with shape of (1, 19167), representing class probabilities.

Image Embeddings

import birder
from birder.inference.classification import infer_image

(net, model_info) = birder.load_pretrained_model("vit_reg4_m16_rms_avg_i-jepa-imagenet21k", inference=True)

# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)

# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)

image = "path/to/image.jpeg"  # or a PIL image
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
# embedding is a NumPy array with shape of (1, 512)

Detection Feature Map

from PIL import Image
import birder

(net, model_info) = birder.load_pretrained_model("vit_reg4_m16_rms_avg_i-jepa-imagenet21k", inference=True)

# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)

# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)

image = Image.open("path/to/image.jpeg")
features = net.detection_features(transform(image).unsqueeze(0))
# features is a dict (stage name -> torch.Tensor)
print([(k, v.size()) for k, v in features.items()])
# Output example:
# [('neck', torch.Size([1, 512, 16, 16]))]

Citation

@misc{dosovitskiy2021imageworth16x16words,
      title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, 
      author={Alexey Dosovitskiy and Lucas Beyer and Alexander Kolesnikov and Dirk Weissenborn and Xiaohua Zhai and Thomas Unterthiner and Mostafa Dehghani and Matthias Minderer and Georg Heigold and Sylvain Gelly and Jakob Uszkoreit and Neil Houlsby},
      year={2021},
      eprint={2010.11929},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2010.11929}, 
}

@misc{darcet2024visiontransformersneedregisters,
      title={Vision Transformers Need Registers}, 
      author={Timothée Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski},
      year={2024},
      eprint={2309.16588},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2309.16588}, 
}

@misc{assran2023selfsupervisedlearningimagesjointembedding,
      title={Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture},
      author={Mahmoud Assran and Quentin Duval and Ishan Misra and Piotr Bojanowski and Pascal Vincent and Michael Rabbat and Yann LeCun and Nicolas Ballas},
      year={2023},
      eprint={2301.08243},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2301.08243},
}
Downloads last month
60
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for birder-project/vit_reg4_m16_rms_avg_i-jepa-imagenet21k

Finetuned
(2)
this model

Dataset used to train birder-project/vit_reg4_m16_rms_avg_i-jepa-imagenet21k