Model Card for pvt_v2_b2_mmcr-il-all
A PVT v2 image classification model. The model follows a two-stage training process: first undergoing self-supervised training (MMCR) on the il-all
dataset, then fine-tuned on the same dataset. The dataset, encompassing all relevant bird species found in Israel, including rarities.
The species list is derived from data available at https://www.israbirding.com/checklist/.
Note: A 256 x 256 variant of this model is available as pvt_v2_b2_mmcr-il-all256px
.
Model Details
Model Type: Image classification and detection backbone
Model Stats:
- Params (M): 25.1
- Input image size: 384 x 384
Dataset: il-all (550 classes)
Papers:
- PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797
- Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations: https://arxiv.org/abs/2303.03307
Model Usage
Image Classification
import birder
from birder.inference.classification import infer_image
(net, model_info) = birder.load_pretrained_model("pvt_v2_b2_mmcr-il-all", inference=True)
# Note: A 256x256 variant is available as "pvt_v2_b2_mmcr-il-all256px"
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
(out, _) = infer_image(net, image, transform)
# out is a NumPy array with shape of (1, 550), representing class probabilities.
Image Embeddings
import birder
from birder.inference.classification import infer_image
(net, model_info) = birder.load_pretrained_model("pvt_v2_b2_mmcr-il-all", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = "path/to/image.jpeg" # or a PIL image
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
# embedding is a NumPy array with shape of (1, 512)
Detection Feature Map
from PIL import Image
import birder
(net, model_info) = birder.load_pretrained_model("pvt_v2_b2_mmcr-il-all", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = Image.open("path/to/image.jpeg")
features = net.detection_features(transform(image).unsqueeze(0))
# features is a dict (stage name -> torch.Tensor)
print([(k, v.size()) for k, v in features.items()])
# Output example:
# [('stage1', torch.Size([1, 64, 96, 96])),
# ('stage2', torch.Size([1, 128, 48, 48])),
# ('stage3', torch.Size([1, 320, 24, 24])),
# ('stage4', torch.Size([1, 512, 12, 12]))]
Citation
@article{Wang_2022,
title={PVT v2: Improved baselines with pyramid vision transformer},
volume={8},
ISSN={2096-0662},
url={http://dx.doi.org/10.1007/s41095-022-0274-8},
DOI={10.1007/s41095-022-0274-8},
number={3},
journal={Computational Visual Media},
publisher={Tsinghua University Press},
author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling},
year={2022},
month=sep, pages={415โ424}
}
@misc{yerxa2023learningefficientcodingnatural,
title={Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations},
author={Thomas Yerxa and Yilun Kuang and Eero Simoncelli and SueYeon Chung},
year={2023},
eprint={2303.03307},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2303.03307},
}
- Downloads last month
- 93
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support