my-test / model.py
bilalfaye's picture
Upload folder using huggingface_hub
43b3c10 verified
from diffusers import UNet2DModel
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union
from collections import OrderedDict
from dataclasses import dataclass
from datasets import load_dataset
import matplotlib.pyplot as plt
from torchvision import transforms
from functools import partial
import torch
from torch.utils.data import DataLoader
from PIL import Image
from diffusers import DDPMScheduler
import torch.nn.functional as F
from accelerate import Accelerator
from diffusers import DDPMPipeline
import os
from huggingface_hub import create_repo, upload_folder
class DPM(UNet2DModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# créer bottleneck_attn ici (selon ton architecture)
self.bottleneck_attn = nn.MultiheadAttention(
embed_dim=self.config.block_out_channels[-1],
num_heads=8, # ou ajuster selon besoin
batch_first=True
)
def forward(
self,
sample: torch.Tensor,
timestep: Union[torch.Tensor, float, int],
class_labels: Optional[torch.Tensor] = None,
return_dict: bool = True,
prototype: Optional[torch.Tensor] = None, # <--- ajouté ici
) -> Union[UNet2DOutput, Tuple]:
r"""
The [`UNet2DModel`] forward method.
Args:
sample (`torch.Tensor`):
The noisy input tensor with the following shape `(batch, channel, height, width)`.
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d.UNet2DOutput`] instead of a plain tuple.
Returns:
[`~models.unets.unet_2d.UNet2DOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unets.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
returned where the first element is the sample tensor.
"""
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when doing class conditioning")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
elif self.class_embedding is None and class_labels is not None:
raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
# 2. pre-process
skip_sample = sample
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "skip_conv"):
sample, res_samples, skip_sample = downsample_block(
hidden_states=sample, temb=emb, skip_sample=skip_sample
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# ----------- Cross-Attention after downsampling ------------------
if prototype is None:
raise ValueError("You must provide a `prototype` tensor for cross-attention")
b, c, h, w = sample.shape
query = sample.view(b, c, h * w).transpose(1, 2) # (B, HW, C)
# prototype: expected shape (B, N, C)
key = value = prototype.to(dtype=sample.dtype)
attn_output, _ = self.bottleneck_attn(query, key, value)
attn_output = attn_output.transpose(1, 2).view(b, c, h, w) # (B, C, H, W)
# Résiduel
sample = sample + attn_output
# ---------------------------------------------------------------
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(sample, emb)
# 5. up
skip_sample = None
for upsample_block in self.up_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "skip_conv"):
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
else:
sample = upsample_block(sample, res_samples, emb)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if skip_sample is not None:
sample += skip_sample
if self.config.time_embedding_type == "fourier":
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
sample = sample / timesteps
if not return_dict:
return (sample,)
return UNet2DOutput(sample=sample)