bilalfaye commited on
Commit
43b3c10
·
verified ·
1 Parent(s): 1ef5c4c

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. model.pth +3 -0
  2. model.py +157 -0
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12c37d621fc5de4ec16be3e5715a73b0e0121e3ca6289942b9bdad35a869ef97
3
+ size 144135290
model.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import UNet2DModel
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from typing import Optional, Tuple, Union
6
+ from collections import OrderedDict
7
+ from dataclasses import dataclass
8
+ from datasets import load_dataset
9
+ import matplotlib.pyplot as plt
10
+ from torchvision import transforms
11
+ from functools import partial
12
+ import torch
13
+ from torch.utils.data import DataLoader
14
+ from PIL import Image
15
+ from diffusers import DDPMScheduler
16
+ import torch.nn.functional as F
17
+ from accelerate import Accelerator
18
+ from diffusers import DDPMPipeline
19
+ import os
20
+ from huggingface_hub import create_repo, upload_folder
21
+
22
+
23
+ class DPM(UNet2DModel):
24
+ def __init__(self, *args, **kwargs):
25
+ super().__init__(*args, **kwargs)
26
+
27
+ # créer bottleneck_attn ici (selon ton architecture)
28
+ self.bottleneck_attn = nn.MultiheadAttention(
29
+ embed_dim=self.config.block_out_channels[-1],
30
+ num_heads=8, # ou ajuster selon besoin
31
+ batch_first=True
32
+ )
33
+
34
+ def forward(
35
+ self,
36
+ sample: torch.Tensor,
37
+ timestep: Union[torch.Tensor, float, int],
38
+ class_labels: Optional[torch.Tensor] = None,
39
+ return_dict: bool = True,
40
+ prototype: Optional[torch.Tensor] = None, # <--- ajouté ici
41
+ ) -> Union[UNet2DOutput, Tuple]:
42
+ r"""
43
+ The [`UNet2DModel`] forward method.
44
+
45
+ Args:
46
+ sample (`torch.Tensor`):
47
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
48
+ timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
49
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
50
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
51
+ return_dict (`bool`, *optional*, defaults to `True`):
52
+ Whether or not to return a [`~models.unets.unet_2d.UNet2DOutput`] instead of a plain tuple.
53
+
54
+ Returns:
55
+ [`~models.unets.unet_2d.UNet2DOutput`] or `tuple`:
56
+ If `return_dict` is True, an [`~models.unets.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
57
+ returned where the first element is the sample tensor.
58
+ """
59
+ # 0. center input if necessary
60
+ if self.config.center_input_sample:
61
+ sample = 2 * sample - 1.0
62
+
63
+ # 1. time
64
+ timesteps = timestep
65
+ if not torch.is_tensor(timesteps):
66
+ timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
67
+ elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
68
+ timesteps = timesteps[None].to(sample.device)
69
+
70
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
71
+ timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
72
+
73
+ t_emb = self.time_proj(timesteps)
74
+
75
+ # timesteps does not contain any weights and will always return f32 tensors
76
+ # but time_embedding might actually be running in fp16. so we need to cast here.
77
+ # there might be better ways to encapsulate this.
78
+ t_emb = t_emb.to(dtype=self.dtype)
79
+ emb = self.time_embedding(t_emb)
80
+
81
+ if self.class_embedding is not None:
82
+ if class_labels is None:
83
+ raise ValueError("class_labels should be provided when doing class conditioning")
84
+
85
+ if self.config.class_embed_type == "timestep":
86
+ class_labels = self.time_proj(class_labels)
87
+
88
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
89
+ emb = emb + class_emb
90
+ elif self.class_embedding is None and class_labels is not None:
91
+ raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
92
+
93
+ # 2. pre-process
94
+ skip_sample = sample
95
+ sample = self.conv_in(sample)
96
+
97
+ # 3. down
98
+ down_block_res_samples = (sample,)
99
+ for downsample_block in self.down_blocks:
100
+ if hasattr(downsample_block, "skip_conv"):
101
+ sample, res_samples, skip_sample = downsample_block(
102
+ hidden_states=sample, temb=emb, skip_sample=skip_sample
103
+ )
104
+ else:
105
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
106
+
107
+ down_block_res_samples += res_samples
108
+
109
+ # ----------- Cross-Attention after downsampling ------------------
110
+ if prototype is None:
111
+ raise ValueError("You must provide a `prototype` tensor for cross-attention")
112
+
113
+ b, c, h, w = sample.shape
114
+ query = sample.view(b, c, h * w).transpose(1, 2) # (B, HW, C)
115
+
116
+ # prototype: expected shape (B, N, C)
117
+ key = value = prototype.to(dtype=sample.dtype)
118
+
119
+ attn_output, _ = self.bottleneck_attn(query, key, value)
120
+ attn_output = attn_output.transpose(1, 2).view(b, c, h, w) # (B, C, H, W)
121
+
122
+ # Résiduel
123
+ sample = sample + attn_output
124
+ # ---------------------------------------------------------------
125
+
126
+
127
+ # 4. mid
128
+ if self.mid_block is not None:
129
+ sample = self.mid_block(sample, emb)
130
+
131
+ # 5. up
132
+ skip_sample = None
133
+ for upsample_block in self.up_blocks:
134
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
135
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
136
+
137
+ if hasattr(upsample_block, "skip_conv"):
138
+ sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
139
+ else:
140
+ sample = upsample_block(sample, res_samples, emb)
141
+
142
+ # 6. post-process
143
+ sample = self.conv_norm_out(sample)
144
+ sample = self.conv_act(sample)
145
+ sample = self.conv_out(sample)
146
+
147
+ if skip_sample is not None:
148
+ sample += skip_sample
149
+
150
+ if self.config.time_embedding_type == "fourier":
151
+ timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
152
+ sample = sample / timesteps
153
+
154
+ if not return_dict:
155
+ return (sample,)
156
+
157
+ return UNet2DOutput(sample=sample)