This repository contains a fine-tuned BERT model for sentiment analysis. The model has been trained to classify text into two sentiment categories: 0 (negative) and 1 (positive). Below is a summary of the model's performance and training details.

Model Performance Summary The model achieved the following performance metrics on the evaluation dataset:

Class Precision Recall F1-Score Support
0 0.88 0.84 0.86 799
1 0.92 0.94 0.93 1467

Accuracy: 0.91

Macro Avg Weighted Avg
Precision = 0.90 Recall = 0.89 F1-Score = 0.90 Precision = 0.90 Recall = 0.91 F1-Score = 0.90

Training Details

Model Architecture BERT (Bidirectional Encoder Representations from Transformers)
Task Sentiment Analysis (Binary Classification)
Epochs 5
Hardware NVIDIA A100 GPU

How to Use

1. Install Dependencies

Ensure you have the necessary libraries installed:

pip install transformers torch

2. Load the Model

You can load the fine-tuned BERT model using the transformers library:

from transformers import BertForSequenceClassification, BertTokenizer
##Load the fine-tuned model and tokenizer
model = BertForSequenceClassification.from_pretrained("path_to_model")
tokenizer = BertTokenizer.from_pretrained("path_to_tokenizer")

3. Preprocess and Predict

Preprocess your input text and make predictions:

the Code

# prompt: use this model to predict a sentence with output sentiment negatif or positif

from transformers import BertTokenizer, BertForSequenceClassification
import torch

# Load the saved model and tokenizer
model_path = 'bibrani/bert-sentiment-analisis-indo'
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertForSequenceClassification.from_pretrained(model_path)

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(device)

def predict_sentiment(text):
    """Predicts the sentiment of a given text.

    Args:
        text (str): The input text.

    Returns:
        str: "Negative sentiment" or "Positive sentiment".
    """
    # Tokenize the input text
    inputs = tokenizer(text, padding="max_length", truncation=True, max_length=512, return_tensors="pt")

    # Move inputs to the device
    input_ids = inputs.input_ids.to(device)
    attention_mask = inputs.attention_mask.to(device)

    # Perform inference
    with torch.no_grad():
        outputs = model(input_ids, attention_mask=attention_mask)
        logits = outputs.logits

    # Get the predicted class
    predicted_class = torch.argmax(logits, dim=1).item()

    if predicted_class == 0:
        return "Negative sentiment", inputs
    else:
        return "Positive sentiment", inputs

# Example usage
text_to_predict = "jadi cerita nya saya sedang ingin makan spaghetti dengan meatball yang kalau menurut ekspektasi saya adalah bakso yang terbuat dari cingcang yang biasa digunakan di menu pasta , setelah sampai , ternyata bakso yang digunakan adalah bakso olahan yang biasa dipakai di tukang bakso , bahkan bentuk nya tidak bulat"
sentiment = predict_sentiment(text_to_predict)
print(f"Text: {text_to_predict}")
print(f"Sentiment: {sentiment}") 

Results Interpretation

Class 0: Represents negative sentiment. Class 1: Represents positive sentiment.

The model shows strong performance across both classes, with slightly higher precision and recall for positive sentiment (class 1).

Downloads last month
17
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for bibrani/bert-sentiment-analisis-indo

Finetuned
(3958)
this model

Dataset used to train bibrani/bert-sentiment-analisis-indo