bert / README.md
biblo0507's picture
End of training
e0b8d2c verified
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bert
    results: []

bert

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1679
  • Accuracy: 0.9669
  • F1: 0.9667
  • Precision: 0.9685
  • Recall: 0.9669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.1054 1.0 38 1.0886 0.4106 0.2390 0.1686 0.4106
1.0709 2.0 76 0.9872 0.6490 0.5588 0.5174 0.6490
0.838 3.0 114 0.7455 0.6424 0.5447 0.4737 0.6424
0.2981 4.0 152 0.2033 0.9338 0.9340 0.9413 0.9338
0.1249 5.0 190 0.1285 0.9669 0.9668 0.9672 0.9669
0.1224 6.0 228 0.2481 0.9470 0.9476 0.9546 0.9470
0.0015 7.0 266 0.3061 0.9536 0.9535 0.9582 0.9536
0.0332 8.0 304 0.3735 0.9404 0.9406 0.9498 0.9404
0.1496 9.0 342 0.2024 0.9669 0.9670 0.9700 0.9669
0.0629 10.0 380 0.1679 0.9669 0.9667 0.9685 0.9669

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.4.1
  • Tokenizers 0.21.0