|
--- |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- visual-document-understanding |
|
- visual-question-answering |
|
- indian-documents |
|
license: apache-2.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
--- |
|
|
|
# Patram-7B-Instruct |
|
|
|
Patram-7B-Instruct by BharatGen is a 7B parameter vision-language model trained from scratch for visual document understanding. As India’s first document foundation model, it is built to tackle complex document analysis. |
|
The model was trained on a carefully curated instruction-tuned dataset, combining diverse public and custom synthetic data designed to support a broad spectrum of document understanding tasks. |
|
|
|
## Model Overview |
|
|
|
* **Architecture:** Vision Transformer (ViT) + MLP projector + OLMo-7B LLM |
|
* **Training Data:** BharatDocs-v1, a dataset of diverse Indian documents + Other Open Source Document Datasets |
|
* **Supported I/O Formats:** The model currently accepts English-language instructions and image files (e.g., PNG, JPEG) as input. The output is provided in text format. |
|
* **Language:** English (Indian language support upcoming) |
|
* **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
## Usage Examples |
|
|
|
Use the `transformers` library. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig |
|
from PIL import Image |
|
import requests |
|
|
|
# Model ID and device setup |
|
model_id = "bharatgenai/patram-7b-instruct" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
# Load processor and model |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
trust_remote_code=True |
|
).to(device) |
|
|
|
def get_patram_response(image_path_or_url, question): |
|
try: |
|
# Load image |
|
if image_path_or_url.startswith("http"): |
|
image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert("RGB") |
|
else: |
|
image = Image.open(image_path_or_url).convert("RGB") |
|
except Exception as e: |
|
print(f"Error loading image: {e}") |
|
return None |
|
|
|
# Format the prompt as expected |
|
prompt = f"Question: {question} Answer based on the image." |
|
|
|
try: |
|
# Preprocess image and text using the processor |
|
inputs = processor.process(images=[image], text=prompt) |
|
inputs = {k: v.to(device).unsqueeze(0) for k, v in inputs.items()} |
|
|
|
# Generate output using model's generate_from_batch method (Patram-specific) |
|
output = model.generate_from_batch( |
|
inputs, |
|
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), |
|
tokenizer=processor.tokenizer |
|
) |
|
|
|
# Extract generated tokens (excluding input tokens) and decode |
|
generated_tokens = output[0, inputs['input_ids'].size(1):] |
|
response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True).strip() |
|
return response |
|
except Exception as e: |
|
print(f"Error during inference: {e}") |
|
return None |
|
|
|
# Example usage: |
|
# image_input = "https://knowscope.in/wp-content/uploads/2025/05/cghd-nag.png" |
|
# question = "Who issued this notice?" |
|
# answer = get_patram_response(image_input, question) |
|
# if answer: |
|
# print("Answer:", answer) |
|
``` |
|
|
|
**Note**: If you're trying this on an Apple Silicon (M1/M2/M3/M4/...) chip, please follow the official documentation by PyTorch and Hugging Face for installing dependencies: |
|
|
|
- [PyTorch's official guide on installation (macOS)](https://pytorch.org/get-started/locally/#:~:text=torch%20torchvision%20torchaudio-,Installing%20on%20macOS,-PyTorch%20can%20be) |
|
- [Hugging Face Transformers performance tips](https://huggingface.co/docs/transformers/main/en/perf_train_special) |
|
|
|
|
|
## Evaluations |
|
|
|
We evaluated Patram-7B-Instruct alongside other vision-language models (VLMs) in the 7B–9B parameter range across multiple public document benchmarks. |
|
|
|
**Benchmarks**: DocVQA, VisualMRC, Patram-Bench |
|
|
|
Patram-Bench is an in-house benchmark designed for Indic Document VQA. |
|
|
|
**Metric**: G-Eval (LLM-as-a-judge) |
|
|
|
| Model | Overall | DocVQA | Patram-Bench | VisualMRC | |
|
| ---------------------- | ------- | ------ | ------------ | --------- | |
|
| claude-3.7-sonnet | 0.8830 | 0.8480 | 0.8857 | 0.8830 | |
|
| Qwen2.5-VL-7B-Instruct | 0.8759 | 0.8722 | 0.6816 | 0.9169 | |
|
| gemma-3-12b-it | 0.8556 | 0.8451 | 0.6349 | 0.9069 | |
|
| **patram-7b-instruct** | 0.8331 | 0.8550 | 0.6515 | 0.8510 | |
|
| InternVL3-9B | 0.7865 | 0.8681 | 0.6888 | 0.7405 | |
|
| deepseek-vl2 | 0.7581 | 0.8739 | 0.5089 | 0.7144 | |
|
|
|
*Note: The benchmarked results reflect the API variant. |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@online{BharatGenPatramLaunch2025, |
|
author = {{BharatGen Team}}, |
|
title = {BharatGen Unveils Patram: India's Pioneering Vision-Language Foundation Model for Document Intelligence}, |
|
year = {2025}, |
|
url = {https://bharatgen.com/blog/patram-launch}, |
|
urldate = {2025-06-02} |
|
} |
|
``` |
|
|
|
## Resources |
|
|
|
* **Model**: [huggingface.co/bharatgenai/patram-7b-instruct](https://huggingface.co/bharatgenai/patram-7b-instruct) |
|
* **Project Page**: [bharatgen.com/patram](https://bharatgen.com/patram) |
|
* **Blog**: [bharatgen.com/blog/patram-launch](https://bharatgen.com/blog/patram-launch) |
|
|
|
## Authors |
|
|
|
* **Principal Investigators**: Prof. Ravi Kiran Sarvadevabhatla, Prof. Ganesh Ramakrishnan |
|
* **Contributors**: BharatGen Team |
|
|
|
## Contact |
|
|
|
* [Contact Form](https://bharatgen.com/contact) |
|
* Hugging Face Community Tab |