YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
.png)
Param-1
BharatGen introduces Param-1, a bilingual language model pretrained from scratch on English and Hindi. With 2.9 billion parameters, it serves as a powerful foundational model for text completion.
Param-1 outperforms leading models like LLaMA-3.2B, Gemma-2B, Granite-2B, and Granite-3B on various standard benchmarks.
This early release is equipped with inference support via NVIDIA NeMo.
π Model Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load tokenizer and model
model_name = "bharatgenai/Param-1"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=False)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.bfloat32,
device_map="auto"
)
prompt = "Your promt here."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# --- Generate output ---
with torch.no_grad():
output = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.6,
eos_token_id=tokenizer.eos_token_id,
use_cache=False
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print("Generated Text:\n", generated_text)
π Benchmarks
Task | Param-1 (PT) |
---|---|
ARC Challenge | 53.6 (few) |
ARC Easy | 74.2 (few) |
HellaSwag | 73.8 (few) |
HellaSwag Hi | 43.1 (few) |
MMLU En | 46.2 (few) |
MMLU Hi | 34.6 (few) |
TriviaQA | 42.8 |
TruthfulQA - Gen (BLEU) | 37.3 |
TruthfulQA - MC1 Acc | 28.4 |
TruthfulQA - MC2 Acc | 42.9 |
PIQA | 79.2 |
SuperGLUE - WiC | 50.6 |
SuperGLUE - WSC | 52.9 |
SuperGLUE - boolq | 72.6 |
SuperGLUE - rte | 66.8 |
Notes:
- PT: Pre-Trained
- en-hi: English-Hindi
- Pre-trained on 5 Trillion tokens
π§ Model Architecture
- Hidden size: 2048
- Intermediate size: 7168
- Number of attention heads: 16
- Number of hidden layers: 32
- Number of key-value heads: 8
- Maximum position embeddings: 2048
- Activation function: SiLU
- Positional embeddings: Rotary (RoPE) with
rope_theta=10000.0
- Attention: Grouped-query attention
- Precision: bf16-mixed
ποΈ Training Details
- Training Infrastructure: Yottaβs Shakti Cloud
- Hardware: NVIDIA H100 β 512 GPUs
- Framework: NVIDIA NeMo
π License
This model is released under the BharatGen non-commercial license.
Please refer to the LICENSE for terms and conditions.
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support