simpletuner / README.md
bghira's picture
Model card auto-generated by SimpleTuner
b8e1f95 verified
|
raw
history blame
3.64 kB
metadata
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
  - sdxl
  - sdxl-diffusers
  - text-to-image
  - image-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - standard
pipeline_tag: text-to-image
inference: true

simpletuner

This is a PEFT SingLoRA derived from stabilityai/stable-diffusion-xl-base-1.0.

The main validation prompt used during training was:

A photo-realistic image of a River Phoenix sitting in a field of lavender flowers. The River Phoenix is looking at the viewer.

Validation settings

  • CFG: 4.2
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: ddim
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0

  • Training steps: 1

  • Learning rate: 0.0001

    • Learning rate schedule: constant
    • Warmup steps: 0
  • Max grad value: 2.0

  • Effective batch size: 4

    • Micro-batch size: 4
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True

  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])

  • Optimizer: optimi-stableadamw

  • Trainable parameter precision: Pure BF16

  • Base model precision: int8-quanto

  • Caption dropout probability: 0.1%

  • LoRA Rank: 16

  • LoRA Alpha: None

  • LoRA Dropout: 0.1

  • LoRA initialisation style: default

  • LoRA mode: SingLoRA

Datasets

subject-1024

  • Repeats: 4
  • Total number of images: 29
  • Total number of aspect buckets: 9
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

subject-512

  • Repeats: 4
  • Total number of images: 29
  • Total number of aspect buckets: 8
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

from peft_singlora import setup_singlora
setup_singlora() # overwrites the nn.Linear mapping in PEFT.
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_id = 'bghira/simpletuner'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "A photo-realistic image of a River Phoenix sitting in a field of lavender flowers. The River Phoenix is looking at the viewer."
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.unet, weights=qint8)
freeze(pipeline.unet)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]

model_output.save("output.png", format="PNG")