whisper-tiny-igbo / README.md
benjaminogbonna's picture
End of training
f52f20b verified
metadata
library_name: transformers
language:
  - ig
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Tiny Igbo - Benjamin Ogbonna
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Whisper for Igbo 1.0
          type: mozilla-foundation/common_voice_11_0
          config: ig
          split: None
          args: 'config: ig, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 100

Whisper Tiny Igbo - Benjamin Ogbonna

This model is a fine-tuned version of openai/whisper-tiny on the Whisper for Igbo 1.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 5.9958
  • Wer: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 25
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 50.0 50 4.6220 100.0
0.0 100.0 100 5.1929 105.7143
0.0 150.0 150 5.5613 108.5714
0.0 200.0 200 5.8296 97.1429
0.0 250.0 250 5.9560 100.0
0.0 300.0 300 5.9958 100.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1