Safetensors

This is a pruned and re-organized version of SWivid/F5-TTS, made to be used with the fairytaler Python library, an unofficial reimplementation of F5TTS made for fast and lightweight inference.

Installation

Fairytaler assumes you have a working CUDA environment to install into.

pip install fairytaler

This will install the reimplementation library.

How to Use

You do not need to pre-download anything, necessary data will be downloaded at runtime.

Command Line

Use the fairytaler binary from the command line like so:

fairytaler examples/reference.wav examples/reference.txt "Fairytaler is an unofficial minimal re-implementation of F5 TTS."
Reference Audio Generated Audio

Reference audio sourced from DiPCo

Many options are available, for complete documentation run fairytaler --help.

Python

from fairytaler import F5TTSPipeline

pipeline = F5TTSPipeline.from_pretrained("benjamin-paine/fairytaler", device="auto")
output_wav_file = pipeline(
  text="Hello, this is some test audio!",
  reference_audio="examples/reference.wav",
  reference_text="examples/reference.txt",
  output_save=True
)
print(f"Output saved to {output_wav_file}")

The full execution signature is:

def __call__(
    self,
    text: Union[str, List[str]],
    reference_audio: AudioType,
    reference_text: str,
    reference_sample_rate: Optional[int]=None,
    seed: SeedType=None,
    speed: float=1.0,
    sway_sampling_coef: float=-1.0,
    target_rms: float=0.1,
    cross_fade_duration: float=0.15,
    punctuation_pause_duration: float=0.10,
    num_steps: int=32,
    cfg_strength: float=2.0,
    fix_duration: Optional[float]=None,
    use_tqdm: bool=False,
    output_format: AUDIO_OUTPUT_FORMAT_LITERAL="wav",
    output_save: bool=False,
    chunk_callback: Optional[Callable[[AudioResultType], None]]=None,
    chunk_callback_format: AUDIO_OUTPUT_FORMAT_LITERAL="float",
) -> AudioResultType

Format values are wav, ogg, flac, mp3, float and int. Passing output_save=True will save to file, not passing it will return the data directly.

Citations

@misc{chen2024f5ttsfairytalerfakesfluent,
      title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching}, 
      author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
      year={2024},
      eprint={2410.06885},
      archivePrefix={arXiv},
      primaryClass={eess.AS},
      url={https://arxiv.org/abs/2410.06885}, 
}

@misc{vansegbroeck2019dipcodinnerparty,
      title={DiPCo -- Dinner Party Corpus}, 
      author={Maarten Van Segbroeck and Ahmed Zaid and Ksenia Kutsenko and Cirenia Huerta and Tinh Nguyen and Xuewen Luo and Björn Hoffmeister and Jan Trmal and Maurizio Omologo and Roland Maas},
      year={2019},
      eprint={1909.13447},
      archivePrefix={arXiv},
      primaryClass={eess.AS},
      url={https://arxiv.org/abs/1909.13447}, 
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for benjamin-paine/fairytaler

Base model

SWivid/F5-TTS
Finetuned
(23)
this model