bert-base-uncased
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2495
- Precision: 0.5883
- Recall: 0.5227
- F1 Macro: 0.5485
- Accuracy: 0.7488
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 128
- seed: 0
- distributed_type: multi-GPU
- num_devices: 6
- total_train_batch_size: 48
- total_eval_batch_size: 768
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
0.0788 | 1.0 | 8765 | 0.2294 | 0.5877 | 0.4947 | 0.5234 | 0.7369 |
0.0806 | 2.0 | 17530 | 0.2196 | 0.5982 | 0.5078 | 0.5416 | 0.7499 |
0.0658 | 3.0 | 26295 | 0.2279 | 0.5885 | 0.5103 | 0.5404 | 0.7470 |
0.0435 | 4.0 | 35060 | 0.2368 | 0.5803 | 0.5164 | 0.5422 | 0.7450 |
0.0312 | 5.0 | 43825 | 0.2413 | 0.5726 | 0.5261 | 0.5459 | 0.7423 |
0.025 | 6.0 | 52590 | 0.2425 | 0.5797 | 0.5268 | 0.5492 | 0.7450 |
0.0156 | 7.0 | 61355 | 0.2415 | 0.5977 | 0.5018 | 0.5352 | 0.7477 |
0.0113 | 8.0 | 70120 | 0.2467 | 0.5881 | 0.5195 | 0.5451 | 0.7468 |
0.0092 | 9.0 | 78885 | 0.2468 | 0.5909 | 0.5243 | 0.5508 | 0.7512 |
0.0046 | 10.0 | 87650 | 0.2495 | 0.5883 | 0.5227 | 0.5485 | 0.7488 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.