|
--- |
|
language: mn |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- hf-asr-leaderboard |
|
- generated_from_multiple_datasets |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
- google/fleurs |
|
- bayartsogt/ulaanbal-v0 |
|
- bayartsogt/youtube-mongolian-v1 |
|
metrics: |
|
- wer |
|
- cer |
|
model-index: |
|
- name: whisper-large-v2-mn-13 |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: mn |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 20.02403320952589 |
|
name: Wer |
|
- type: cer |
|
value: 6.601024224251205 |
|
name: Cer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large-v2-mn-13 |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1689 |
|
- Wer: 20.0240 |
|
- Cer: 6.6010 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 25000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:| |
|
| 0.3921 | 0.09 | 1000 | 15.7845 | 0.4101 | 46.9030 | |
|
| 0.3115 | 0.17 | 2000 | 14.2911 | 0.3353 | 41.8451 | |
|
| 0.2659 | 0.26 | 3000 | 11.8131 | 0.2800 | 34.6406 | |
|
| 0.2477 | 0.35 | 4000 | 10.6659 | 0.2578 | 32.0024 | |
|
| 0.2274 | 0.43 | 5000 | 10.0460 | 0.2463 | 30.3419 | |
|
| 0.2059 | 0.52 | 6000 | 9.9264 | 0.2305 | 28.5558 | |
|
| 0.2092 | 0.61 | 7000 | 9.4277 | 0.2196 | 27.8785 | |
|
| 0.1956 | 0.69 | 8000 | 9.2745 | 0.2093 | 26.8353 | |
|
| 0.195 | 0.78 | 9000 | 8.9485 | 0.2042 | 26.6168 | |
|
| 0.195 | 0.87 | 10000 | 8.5324 | 0.2001 | 25.6718 | |
|
| 0.1795 | 0.95 | 11000 | 8.1786 | 0.1936 | 24.1698 | |
|
| 0.1575 | 1.04 | 12000 | 7.8653 | 0.1915 | 23.8912 | |
|
| 0.1358 | 1.13 | 13000 | 7.6749 | 0.1918 | 23.3778 | |
|
| 0.1509 | 1.21 | 14000 | 7.7221 | 0.1852 | 23.1811 | |
|
| 0.1474 | 1.3 | 15000 | 7.3246 | 0.1764 | 22.4984 | |
|
| 0.1461 | 1.39 | 16000 | 7.3187 | 0.1793 | 22.4110 | |
|
| 0.134 | 1.47 | 17000 | 7.1123 | 0.1737 | 21.9412 | |
|
| 0.1289 | 1.56 | 18000 | 7.4593 | 0.1727 | 22.0614 | |
|
| 0.1287 | 1.65 | 19000 | 7.0230 | 0.1701 | 21.4223 | |
|
| 0.1196 | 1.73 | 20000 | 6.9447 | 0.1666 | 21.2475 | |
|
| 0.1275 | 1.82 | 21000 | 6.7956 | 0.1653 | 20.8106 | |
|
| 0.1329 | 1.91 | 22000 | 6.7729 | 0.1622 | 20.3354 | |
|
| 0.1294 | 1.99 | 23000 | 6.6448 | 0.1606 | 20.2207 | |
|
| 0.1043 | 2.08 | 24000 | 6.6010 | 0.1689 | 20.0240 | |
|
| 0.079 | 2.17 | 25000 | 6.6246 | 0.1687 | 20.1005 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.8.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|