wav2vec2-base-mn-pretrain-42h-finetuned-speech-commands

This model is a fine-tuned version of bayartsogt/wav2vec2-base-mn-pretrain-42h on the Mongolian Speech Commands dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1007
  • Accuracy: 0.9762
  • F1: 0.9758

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.2273 1.0 17 2.2714 0.1190 0.0253
1.7478 2.0 34 1.2036 0.8452 0.8242
0.775 3.0 51 0.4755 0.9524 0.9526
0.4738 4.0 68 0.2056 0.9881 0.9878
0.3146 5.0 85 0.1485 0.9762 0.9765
0.2677 6.0 102 0.1277 0.9762 0.9758
0.2636 7.0 119 0.0919 0.9881 0.9880
0.2122 8.0 136 0.0903 0.9762 0.9758
0.1817 9.0 153 0.0782 0.9881 0.9880
0.198 10.0 170 0.0982 0.9762 0.9758
0.1436 11.0 187 0.1053 0.9762 0.9758
0.1111 12.0 204 0.1004 0.9762 0.9758
0.1607 13.0 221 0.1176 0.9762 0.9758
0.1209 14.0 238 0.1097 0.9762 0.9758
0.0974 15.0 255 0.1136 0.9762 0.9758
0.1351 16.0 272 0.0986 0.9762 0.9758
0.1008 17.0 289 0.1010 0.9762 0.9758
0.097 18.0 306 0.0781 0.9762 0.9758
0.0806 19.0 323 0.1106 0.9762 0.9758
0.0744 20.0 340 0.1007 0.9762 0.9758

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
13
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.