VICIOUS_MESH-12B
Collection
Vicious_Mesh-12B is the exciting new evolution of our MISCHIEVOUS-12B model, revealed through a playful anagram. :]
•
10 items
•
Updated
•
1
This is a merge of pre-trained language models created using mergekit.
This model was merged using the SLERP merge method.
The following models were included in the merge:
The following YAML configuration was used to produce this model:
base_model: bamec66557/VICIOUS_MESH-12B-OMEGA
dtype: bfloat16
merge_method: slerp
tokenizer_source: base
# Slices Configuration
slices:
- sources:
- model: bamec66557/VICIOUS_MESH-12B-OMEGA
layer_range: [0, 10]
- model: bamec66557/VICIOUS_MESH-12B-BETA
layer_range: [0, 10]
parameters:
t:
- name: self_attn
value: [0.5, 0.55, 0.6, 0.65, 0.7]
- name: mlp
value: [1.0, 1.05, 1.1, 1.15, 1.2]
- name: layer_norm
value: [0.9, 0.95, 1.0, 1.05, 1.1]
- sources:
- model: bamec66557/VICIOUS_MESH-12B-OMEGA
layer_range: [10, 20]
- model: bamec66557/VICIOUS_MESH-12B-BETA
layer_range: [10, 20]
parameters:
t:
- name: self_attn
value: [0.4, 0.45, 0.5, 0.55, 0.6]
- name: mlp
value: [1.1, 1.15, 1.2, 1.25, 1.3]
- name: layer_norm
value: [1.0, 1.05, 1.1, 1.15, 1.2]
- sources:
- model: bamec66557/VICIOUS_MESH-12B-OMEGA
layer_range: [20, 30]
- model: bamec66557/VICIOUS_MESH-12B-BETA
layer_range: [20, 30]
parameters:
t:
- name: self_attn
value: [0.6, 0.65, 0.7, 0.75, 0.8]
- name: mlp
value: [0.9, 0.95, 1.0, 1.05, 1.1]
- name: layer_norm
value: [0.85, 0.9, 0.95, 1.0, 1.05]
- sources:
- model: bamec66557/VICIOUS_MESH-12B-OMEGA
layer_range: [30, 40]
- model: bamec66557/VICIOUS_MESH-12B-BETA
layer_range: [30, 40]
parameters:
t:
- name: self_attn
value: [0.7, 0.75, 0.8, 0.85, 0.9]
- name: mlp
value: [0.8, 0.85, 0.9, 0.95, 1.0]
- name: layer_norm
value: [0.8, 0.85, 0.9, 0.95, 1.0]
# Regularization
regularization:
- method: gradient_penalty
scale: 0.05 # Increased influence for gradient control
- method: weight_clipping
clip_range: [-0.2, 0.2] # Broader clipping range for flexibility
- method: random_noise
scale: 0.01 # Stronger noise injection
- method: attention_dropout
scale: 0.1 # Higher dropout to reduce attention fixation
# Postprocessing
postprocessing:
- operation: entropy_regularization
scale: 0.05 # Stronger encouragement for diverse outputs
- operation: non_linear_scaling
parameters:
function: tanh
- operation: sharpening
intensity: 0.5 # Enhanced sharpening for precise outputs
- operation: gaussian_smoothing
sigma: 1.5 # Increased smoothing for stable outputs
- operation: normalize
- operation: dynamic_scaling
scale_range: [0.8, 1.2] # Expanded dynamic range for scaling
- operation: smoothing
parameters:
adaptive: true
range: [0.85, 1.15] # Wider adaptive smoothing range
kernel_size: 5
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 27.26 |
IFEval (0-Shot) | 67.21 |
BBH (3-Shot) | 31.36 |
MATH Lvl 5 (4-Shot) | 12.08 |
GPQA (0-shot) | 8.84 |
MuSR (0-shot) | 14.34 |
MMLU-PRO (5-shot) | 29.76 |