merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
description: Merging MISCHIEVOUS-12B-Mix models with sliced slerp
model_description: |
This configuration merges two versions of the MISCHIEVOUS-12B-Mix model: 0.4v and 0.3v.
0.3v was further fine-tuned on a specific dataset (ADD DATASET NAME HERE if known).
The sliced slerp approach allows for layer-specific control over the merging process.
base_model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
dtype: bfloat16
merge_method: slerp
tokenizer_source: union
slices:
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [0, 10]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [0, 10]
parameters:
t:
- name: self_attn
value: [0.8, 0.85, 0.9, 0.95, 1.0]
- name: mlp
value: [0.9, 0.95, 1.0, 1.05, 1.1]
- name: layer_norm
value: [0.6, 0.65, 0.7, 0.75, 0.8]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [10, 20]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [10, 20]
parameters:
t:
- name: self_attn
value: [0.7, 0.75, 0.8, 0.85, 0.9]
- name: mlp
value: [1.0, 0.95, 0.9, 0.85, 0.8]
- name: layer_norm
value: [0.5, 0.55, 0.6, 0.65, 0.7]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [20, 30]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [20, 30]
parameters:
t:
- name: self_attn
value: [0.6, 0.65, 0.7, 0.75, 0.8]
- name: mlp
value: [0.8, 0.75, 0.7, 0.65, 0.6]
- name: layer_norm
value: [0.4, 0.45, 0.5, 0.55, 0.6]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [30, 40]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [30, 40]
parameters:
t:
- name: self_attn
value: [0.9, 1.0, 1.1, 1.2, 1.3]
- name: mlp
value: [0.7, 0.65, 0.6, 0.55, 0.5]
- name: layer_norm
value: [0.7, 0.75, 0.8, 0.85, 0.9]
- name: embed_tokens
value: [1.0]
regularization:
- method: weight_clipping
clip_range: [-0.2, 0.2]
- method: random_noise
scale: 0.015
- method: l2_norm
scale: 0.01
postprocessing:
- operation: random_noise
scale: 0.0025
- operation: non_linear_scaling
parameters:
function: tanh
- operation: sharpening
intensity: 0.3
- operation: gaussian_smoothing
sigma: 1.5
- operation: smoothing
parameters:
adaptive: true
range: [0.8, 1.2]
kernel_size: 5
- operation: normalize
- operation: dynamic_scaling
scale_range: [0.75, 1.25]
evaluation:
metrics:
- perplexity
- accuracy
- bleu
- rouge
datasets:
- wikitext
- lambada
- (ADD RELEVANT TASK-SPECIFIC DATASETS HERE)
prompts:
- "The quick brown fox jumps over the lazy dog."
- "Translate 'Thank you' to Spanish:"
- "Write a short summary of the French Revolution."
logging:
output_dir: ./merged_models
log_level: INFO
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric |
Value |
Avg. |
25.80 |
IFEval (0-Shot) |
62.50 |
BBH (3-Shot) |
30.36 |
MATH Lvl 5 (4-Shot) |
11.63 |
GPQA (0-shot) |
8.84 |
MuSR (0-shot) |
11.64 |
MMLU-PRO (5-shot) |
29.84 |