README.md CHANGED
@@ -2,8 +2,7 @@
2
  language:
3
  - en
4
  - zh
5
- license_name: baichuan2-community-license
6
- license_link: https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/main/Community%20License%20for%20Baichuan2%20Model.pdf
7
  tasks:
8
  - text-generation
9
  ---
@@ -20,7 +19,6 @@ tasks:
20
  <a href="https://github.com/baichuan-inc/Baichuan2" target="_blank">🦉GitHub</a> | <a href="https://github.com/baichuan-inc/Baichuan-7B/blob/main/media/wechat.jpeg?raw=true" target="_blank">💬WeChat</a>
21
  </div>
22
  <div align="center">
23
- 百川API支持搜索增强和192K长窗口,新增百川搜索增强知识库、限时免费!<br>
24
  🚀 <a href="https://www.baichuan-ai.com/" target="_blank">百川大模型在线对话平台</a> 已正式向公众开放 🎉
25
  </div>
26
 
@@ -29,7 +27,6 @@ tasks:
29
  - [📖 模型介绍/Introduction](#Introduction)
30
  - [⚙️ 快速开始/Quick Start](#Start)
31
  - [📊 Benchmark评估/Benchmark Evaluation](#Benchmark)
32
- - [👥 社区与生态/Community](#Community)
33
  - [📜 声明与协议/Terms and Conditions](#Terms)
34
 
35
 
@@ -118,16 +115,6 @@ In addition to the [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baich
118
 
119
  ![checkpoint](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/checkpoints.jpeg)
120
 
121
- # <span id="Community">社区与生态/Community</span>
122
-
123
- ## Intel 酷睿 Ultra 平台运行百川大模型
124
-
125
- 使用酷睿™/至强® 可扩展处理器或配合锐炫™ GPU等进行部署[Baichuan2-7B-Chat],[Baichuan2-13B-Chat]模型,推荐使用 BigDL-LLM([CPU], [GPU])以发挥更好推理性能。
126
-
127
- 详细支持信息可参考[中文操作手册](https://github.com/intel-analytics/bigdl-llm-tutorial/tree/main/Chinese_Version),包括用notebook支持,[加载,优化,保存方法](https://github.com/intel-analytics/bigdl-llm-tutorial/blob/main/Chinese_Version/ch_3_AppDev_Basic/3_BasicApp.ipynb)等。
128
-
129
- When deploy on Core™/Xeon® Scalable Processors or with Arc™ GPU, BigDL-LLM ([CPU], [GPU]) is recommended to take full advantage of better inference performance.
130
-
131
  # <span id="Terms">声明与协议/Terms and Conditions</span>
132
 
133
  ## 声明
@@ -145,21 +132,9 @@ We have done our best to ensure the compliance of the data used in the model tra
145
 
146
  ## 协议
147
 
148
- 社区使用 Baichuan 2 模型需要遵循 [Apache 2.0](https://github.com/baichuan-inc/Baichuan2/blob/main/LICENSE) 和[《Baichuan 2 模型社区许可协议》](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)。Baichuan 2 模型支持商业用途,如果您计划将 Baichuan 2 模型或其衍生品用于商业目的,请您确认您的主体符合以下情况:
149
- 1. 您或您的关联方的服务或产品的日均用户活跃量(DAU)低于100万。
150
- 2. 您或您的关联方不是软件服务提供商、云服务提供商。
151
- 3. 您或您的关联方不存在将授予您的商用许可,未经百川许可二次授权给其他第三方的可能。
152
-
153
- 在符合以上条件的前提下,您需要通过以下联系邮箱 [email protected] ,提交《Baichuan 2 模型社区许可协议》要求的申请材料。审核通过后,百川将特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销的商用版权许可。
154
-
155
- The community usage of Baichuan 2 model requires adherence to [Apache 2.0](https://github.com/baichuan-inc/Baichuan2/blob/main/LICENSE) and [Community License for Baichuan2 Model](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf). The Baichuan 2 model supports commercial use. If you plan to use the Baichuan 2 model or its derivatives for commercial purposes, please ensure that your entity meets the following conditions:
156
-
157
- 1. The Daily Active Users (DAU) of your or your affiliate's service or product is less than 1 million.
158
- 2. Neither you nor your affiliates are software service providers or cloud service providers.
159
- 3. There is no possibility for you or your affiliates to grant the commercial license given to you, to reauthorize it to other third parties without Baichuan's permission.
160
-
161
- Upon meeting the above conditions, you need to submit the application materials required by the Baichuan 2 Model Community License Agreement via the following contact email: [email protected]. Once approved, Baichuan will hereby grant you a non-exclusive, global, non-transferable, non-sublicensable, revocable commercial copyright license.
162
 
 
163
 
164
  [GitHub]:https://github.com/baichuan-inc/Baichuan2
165
  [Baichuan2]:https://github.com/baichuan-inc/Baichuan2
@@ -187,6 +162,3 @@ Upon meeting the above conditions, you need to submit the application materials
187
188
  [训练过程heckpoint下载]: https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints
189
  [百川智能]: https://www.baichuan-ai.com
190
-
191
- [CPU]: https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2
192
- [GPU]: https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/baichuan2
 
2
  language:
3
  - en
4
  - zh
5
+ license: other
 
6
  tasks:
7
  - text-generation
8
  ---
 
19
  <a href="https://github.com/baichuan-inc/Baichuan2" target="_blank">🦉GitHub</a> | <a href="https://github.com/baichuan-inc/Baichuan-7B/blob/main/media/wechat.jpeg?raw=true" target="_blank">💬WeChat</a>
20
  </div>
21
  <div align="center">
 
22
  🚀 <a href="https://www.baichuan-ai.com/" target="_blank">百川大模型在线对话平台</a> 已正式向公众开放 🎉
23
  </div>
24
 
 
27
  - [📖 模型介绍/Introduction](#Introduction)
28
  - [⚙️ 快速开始/Quick Start](#Start)
29
  - [📊 Benchmark评估/Benchmark Evaluation](#Benchmark)
 
30
  - [📜 声明与协议/Terms and Conditions](#Terms)
31
 
32
 
 
115
 
116
  ![checkpoint](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/checkpoints.jpeg)
117
 
 
 
 
 
 
 
 
 
 
 
118
  # <span id="Terms">声明与协议/Terms and Conditions</span>
119
 
120
  ## 声明
 
132
 
133
  ## 协议
134
 
135
+ Baichuan 2 模型的社区使用需遵循[《Baichuan 2 模型社区许可协议》]。Baichuan 2 支持商用。如果将 Baichuan 2 模型或其衍生品用作商业用途,请您按照如下方式联系许可方,以进行登记并向许可方申请书面授权:联系邮箱 [[email protected]]。
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
+ The use of the source code in this repository follows the open-source license Apache 2.0. Community use of the Baichuan 2 model must adhere to the [Community License for Baichuan 2 Model](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf). Baichuan 2 supports commercial use. If you are using the Baichuan 2 models or their derivatives for commercial purposes, please contact the licensor in the following manner for registration and to apply for written authorization: Email [email protected].
138
 
139
  [GitHub]:https://github.com/baichuan-inc/Baichuan2
140
  [Baichuan2]:https://github.com/baichuan-inc/Baichuan2
 
162
163
  [训练过程heckpoint下载]: https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints
164
  [百川智能]: https://www.baichuan-ai.com
 
 
 
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<pad>": 125696
3
+ }
modeling_baichuan.py CHANGED
@@ -502,7 +502,6 @@ class NormHead(nn.Module):
502
  def forward(self, hidden_states):
503
  if self.training:
504
  norm_weight = nn.functional.normalize(self.weight)
505
- self.first_flag = True
506
  elif self.first_flag:
507
  self.first_flag = False
508
  self.weight.data = nn.functional.normalize(self.weight)
 
502
  def forward(self, hidden_states):
503
  if self.training:
504
  norm_weight = nn.functional.normalize(self.weight)
 
505
  elif self.first_flag:
506
  self.first_flag = False
507
  self.weight.data = nn.functional.normalize(self.weight)
tokenization_baichuan.py CHANGED
@@ -72,13 +72,6 @@ class BaichuanTokenizer(PreTrainedTokenizer):
72
  eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
  unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
  pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
-
76
- self.vocab_file = vocab_file
77
- self.add_bos_token = add_bos_token
78
- self.add_eos_token = add_eos_token
79
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
- self.sp_model.Load(vocab_file)
81
-
82
  super().__init__(
83
  bos_token=bos_token,
84
  eos_token=eos_token,
@@ -90,6 +83,11 @@ class BaichuanTokenizer(PreTrainedTokenizer):
90
  clean_up_tokenization_spaces=clean_up_tokenization_spaces,
91
  **kwargs,
92
  )
 
 
 
 
 
93
 
94
  def __getstate__(self):
95
  state = self.__dict__.copy()
 
72
  eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
  unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
  pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
 
 
 
 
 
 
 
75
  super().__init__(
76
  bos_token=bos_token,
77
  eos_token=eos_token,
 
83
  clean_up_tokenization_spaces=clean_up_tokenization_spaces,
84
  **kwargs,
85
  )
86
+ self.vocab_file = vocab_file
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
90
+ self.sp_model.Load(vocab_file)
91
 
92
  def __getstate__(self):
93
  state = self.__dict__.copy()