CrossEncoder based on answerdotai/ModernBERT-base
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("ayushexel/reranker-ModernBERT-base-gooaq-1-epoch-1995000")
# Get scores for pairs of texts
pairs = [
['is the beryl m762 in pubg mobile?', 'Beryl M762 is a versatile Assault Rifle in PUBG Mobile that has more attachment slots than AKM and uses 7.62 ammunition. The high damage of Beryl M762 makes it a viable option for the players.'],
['is the beryl m762 in pubg mobile?', 'The main difference that most people will notice while playing PUBG Mobile Lite after playing on PUBG Mobile is the availability of maps. PUBG Mobile has four maps Erangel, Miramar, Sanhok and Vikendi. PUBG Mobile Lite only has two maps; Erangel in the Classic Mode and War in the Arcade Mode.'],
['is the beryl m762 in pubg mobile?', 'PUBG Mobile Lite is the toned-down version of PUBG Mobile, which was developed specifically for players with low-end devices. The game is available for only Android devices at the moment, and there is no way by which you can download it on an iOS device.'],
['is the beryl m762 in pubg mobile?', 'Download and play PUBG Mobile on PC with NoxPlayer! PUBG Mobile is a battle royale FPS game developed by Tencent. It is similar to Garena Free Fire and Call of duty Mobile. NoxPlayer is the best emulator to play PUBG Mobile on PC.'],
['is the beryl m762 in pubg mobile?', "Can you play PUBG Mobile with a controller? ... For PUBG Mobile, there is no official controller support for the game outside of movement, meaning you can connect a Bluetooth-enabled controller to your mobile device and move around, but the buttons won't have any actions mapped to them."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'is the beryl m762 in pubg mobile?',
[
'Beryl M762 is a versatile Assault Rifle in PUBG Mobile that has more attachment slots than AKM and uses 7.62 ammunition. The high damage of Beryl M762 makes it a viable option for the players.',
'The main difference that most people will notice while playing PUBG Mobile Lite after playing on PUBG Mobile is the availability of maps. PUBG Mobile has four maps Erangel, Miramar, Sanhok and Vikendi. PUBG Mobile Lite only has two maps; Erangel in the Classic Mode and War in the Arcade Mode.',
'PUBG Mobile Lite is the toned-down version of PUBG Mobile, which was developed specifically for players with low-end devices. The game is available for only Android devices at the moment, and there is no way by which you can download it on an iOS device.',
'Download and play PUBG Mobile on PC with NoxPlayer! PUBG Mobile is a battle royale FPS game developed by Tencent. It is similar to Garena Free Fire and Call of duty Mobile. NoxPlayer is the best emulator to play PUBG Mobile on PC.',
"Can you play PUBG Mobile with a controller? ... For PUBG Mobile, there is no official controller support for the game outside of movement, meaning you can connect a Bluetooth-enabled controller to your mobile device and move around, but the buttons won't have any actions mapped to them.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
gooaq-dev
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.4829 (+0.2133) |
mrr@10 | 0.4823 (+0.2235) |
ndcg@10 | 0.5236 (+0.2141) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100
,NanoNFCorpus_R100
andNanoNQ_R100
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.4301 (-0.0595) | 0.3684 (+0.1074) | 0.4224 (+0.0028) |
mrr@10 | 0.4149 (-0.0626) | 0.4482 (-0.0516) | 0.4220 (-0.0047) |
ndcg@10 | 0.4928 (-0.0477) | 0.3782 (+0.0531) | 0.4617 (-0.0390) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
Metric | Value |
---|---|
map | 0.4070 (+0.0169) |
mrr@10 | 0.4284 (-0.0396) |
ndcg@10 | 0.4442 (-0.0112) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 11,456,701 training samples
- Columns:
question
,answer
, andlabel
- Approximate statistics based on the first 1000 samples:
question answer label type string string int details - min: 20 characters
- mean: 44.38 characters
- max: 82 characters
- min: 57 characters
- mean: 253.74 characters
- max: 358 characters
- 0: ~82.70%
- 1: ~17.30%
- Samples:
question answer label is the beryl m762 in pubg mobile?
Beryl M762 is a versatile Assault Rifle in PUBG Mobile that has more attachment slots than AKM and uses 7.62 ammunition. The high damage of Beryl M762 makes it a viable option for the players.
1
is the beryl m762 in pubg mobile?
The main difference that most people will notice while playing PUBG Mobile Lite after playing on PUBG Mobile is the availability of maps. PUBG Mobile has four maps Erangel, Miramar, Sanhok and Vikendi. PUBG Mobile Lite only has two maps; Erangel in the Classic Mode and War in the Arcade Mode.
0
is the beryl m762 in pubg mobile?
PUBG Mobile Lite is the toned-down version of PUBG Mobile, which was developed specifically for players with low-end devices. The game is available for only Android devices at the moment, and there is no way by which you can download it on an iOS device.
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 12load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 12dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1056 (-0.2039) | 0.0327 (-0.5077) | 0.2403 (-0.0847) | 0.0253 (-0.4753) | 0.0995 (-0.3559) |
0.0000 | 1 | 1.1878 | - | - | - | - | - |
0.0045 | 200 | 1.2005 | - | - | - | - | - |
0.0089 | 400 | 1.1777 | - | - | - | - | - |
0.0134 | 600 | 1.1557 | - | - | - | - | - |
0.0179 | 800 | 1.0045 | - | - | - | - | - |
0.0223 | 1000 | 0.7861 | - | - | - | - | - |
0.0268 | 1200 | 0.7065 | - | - | - | - | - |
0.0313 | 1400 | 0.6585 | - | - | - | - | - |
0.0358 | 1600 | 0.6381 | - | - | - | - | - |
0.0402 | 1800 | 0.6047 | - | - | - | - | - |
0.0447 | 2000 | 0.594 | - | - | - | - | - |
0.0492 | 2200 | 0.5911 | - | - | - | - | - |
0.0536 | 2400 | 0.5652 | - | - | - | - | - |
0.0581 | 2600 | 0.5541 | - | - | - | - | - |
0.0626 | 2800 | 0.5445 | - | - | - | - | - |
0.0670 | 3000 | 0.5234 | - | - | - | - | - |
0.0715 | 3200 | 0.5215 | - | - | - | - | - |
0.0760 | 3400 | 0.5297 | - | - | - | - | - |
0.0804 | 3600 | 0.517 | - | - | - | - | - |
0.0849 | 3800 | 0.5108 | - | - | - | - | - |
0.0894 | 4000 | 0.5051 | - | - | - | - | - |
0.0938 | 4200 | 0.5114 | - | - | - | - | - |
0.0983 | 4400 | 0.5026 | - | - | - | - | - |
0.1028 | 4600 | 0.4826 | - | - | - | - | - |
0.1073 | 4800 | 0.489 | - | - | - | - | - |
0.1117 | 5000 | 0.4845 | - | - | - | - | - |
0.1162 | 5200 | 0.4827 | - | - | - | - | - |
0.1207 | 5400 | 0.4715 | - | - | - | - | - |
0.1251 | 5600 | 0.4714 | - | - | - | - | - |
0.1296 | 5800 | 0.4606 | - | - | - | - | - |
0.1341 | 6000 | 0.4629 | - | - | - | - | - |
0.1385 | 6200 | 0.4488 | - | - | - | - | - |
0.1430 | 6400 | 0.4605 | - | - | - | - | - |
0.1475 | 6600 | 0.4622 | - | - | - | - | - |
0.1519 | 6800 | 0.4555 | - | - | - | - | - |
0.1564 | 7000 | 0.4512 | - | - | - | - | - |
0.1609 | 7200 | 0.4403 | - | - | - | - | - |
0.1654 | 7400 | 0.44 | - | - | - | - | - |
0.1698 | 7600 | 0.4444 | - | - | - | - | - |
0.1743 | 7800 | 0.441 | - | - | - | - | - |
0.1788 | 8000 | 0.4364 | - | - | - | - | - |
0.1832 | 8200 | 0.4419 | - | - | - | - | - |
0.1877 | 8400 | 0.4283 | - | - | - | - | - |
0.1922 | 8600 | 0.4296 | - | - | - | - | - |
0.1966 | 8800 | 0.419 | - | - | - | - | - |
0.2011 | 9000 | 0.4385 | - | - | - | - | - |
0.2056 | 9200 | 0.4282 | - | - | - | - | - |
0.2100 | 9400 | 0.4171 | - | - | - | - | - |
0.2145 | 9600 | 0.4249 | - | - | - | - | - |
0.2190 | 9800 | 0.4191 | - | - | - | - | - |
0.2234 | 10000 | 0.4227 | - | - | - | - | - |
0.2279 | 10200 | 0.4179 | - | - | - | - | - |
0.2324 | 10400 | 0.4203 | - | - | - | - | - |
0.2369 | 10600 | 0.4125 | - | - | - | - | - |
0.2413 | 10800 | 0.4065 | - | - | - | - | - |
0.2458 | 11000 | 0.4068 | - | - | - | - | - |
0.2503 | 11200 | 0.4122 | - | - | - | - | - |
0.2547 | 11400 | 0.4217 | - | - | - | - | - |
0.2592 | 11600 | 0.4054 | - | - | - | - | - |
0.2637 | 11800 | 0.4004 | - | - | - | - | - |
0.2681 | 12000 | 0.4143 | - | - | - | - | - |
0.2726 | 12200 | 0.4012 | - | - | - | - | - |
0.2771 | 12400 | 0.4023 | - | - | - | - | - |
0.2815 | 12600 | 0.3975 | - | - | - | - | - |
0.2860 | 12800 | 0.3983 | - | - | - | - | - |
0.2905 | 13000 | 0.3958 | - | - | - | - | - |
0.2950 | 13200 | 0.4009 | - | - | - | - | - |
0.2994 | 13400 | 0.4048 | - | - | - | - | - |
0.3039 | 13600 | 0.4017 | - | - | - | - | - |
0.3084 | 13800 | 0.4009 | - | - | - | - | - |
0.3128 | 14000 | 0.3865 | - | - | - | - | - |
0.3173 | 14200 | 0.3883 | - | - | - | - | - |
0.3218 | 14400 | 0.3864 | - | - | - | - | - |
0.3262 | 14600 | 0.3873 | - | - | - | - | - |
0.3307 | 14800 | 0.3906 | - | - | - | - | - |
0.3352 | 15000 | 0.3909 | - | - | - | - | - |
0.3396 | 15200 | 0.3881 | - | - | - | - | - |
0.3441 | 15400 | 0.3814 | - | - | - | - | - |
0.3486 | 15600 | 0.3813 | - | - | - | - | - |
0.3530 | 15800 | 0.3785 | - | - | - | - | - |
0.3575 | 16000 | 0.3852 | - | - | - | - | - |
0.3620 | 16200 | 0.381 | - | - | - | - | - |
0.3665 | 16400 | 0.3865 | - | - | - | - | - |
0.3709 | 16600 | 0.377 | - | - | - | - | - |
0.3754 | 16800 | 0.3762 | - | - | - | - | - |
0.3799 | 17000 | 0.379 | - | - | - | - | - |
0.3843 | 17200 | 0.3738 | - | - | - | - | - |
0.3888 | 17400 | 0.38 | - | - | - | - | - |
0.3933 | 17600 | 0.3786 | - | - | - | - | - |
0.3977 | 17800 | 0.3825 | - | - | - | - | - |
0.4022 | 18000 | 0.3691 | - | - | - | - | - |
0.4067 | 18200 | 0.3732 | - | - | - | - | - |
0.4111 | 18400 | 0.3777 | - | - | - | - | - |
0.4156 | 18600 | 0.378 | - | - | - | - | - |
0.4201 | 18800 | 0.3627 | - | - | - | - | - |
0.4246 | 19000 | 0.3698 | - | - | - | - | - |
0.4290 | 19200 | 0.3746 | - | - | - | - | - |
0.4335 | 19400 | 0.3868 | - | - | - | - | - |
0.4380 | 19600 | 0.3659 | - | - | - | - | - |
0.4424 | 19800 | 0.3713 | - | - | - | - | - |
0.4469 | 20000 | 0.3685 | - | - | - | - | - |
0.4514 | 20200 | 0.3737 | - | - | - | - | - |
0.4558 | 20400 | 0.3653 | - | - | - | - | - |
0.4603 | 20600 | 0.3648 | - | - | - | - | - |
0.4648 | 20800 | 0.3684 | - | - | - | - | - |
0.4692 | 21000 | 0.3638 | - | - | - | - | - |
0.4737 | 21200 | 0.3628 | - | - | - | - | - |
0.4782 | 21400 | 0.3662 | - | - | - | - | - |
0.4826 | 21600 | 0.3662 | - | - | - | - | - |
0.4871 | 21800 | 0.3696 | - | - | - | - | - |
0.4916 | 22000 | 0.3664 | - | - | - | - | - |
0.4961 | 22200 | 0.3583 | - | - | - | - | - |
0.5005 | 22400 | 0.3666 | - | - | - | - | - |
0.5050 | 22600 | 0.3637 | - | - | - | - | - |
0.5095 | 22800 | 0.3679 | - | - | - | - | - |
0.5139 | 23000 | 0.3609 | - | - | - | - | - |
0.5184 | 23200 | 0.3566 | - | - | - | - | - |
0.5229 | 23400 | 0.3573 | - | - | - | - | - |
0.5273 | 23600 | 0.3576 | - | - | - | - | - |
0.5318 | 23800 | 0.3566 | - | - | - | - | - |
0.5363 | 24000 | 0.3541 | - | - | - | - | - |
0.5407 | 24200 | 0.3498 | - | - | - | - | - |
0.5452 | 24400 | 0.3462 | - | - | - | - | - |
0.5497 | 24600 | 0.3484 | - | - | - | - | - |
0.5542 | 24800 | 0.3461 | - | - | - | - | - |
0.5586 | 25000 | 0.3517 | - | - | - | - | - |
0.5631 | 25200 | 0.3494 | - | - | - | - | - |
0.5676 | 25400 | 0.3487 | - | - | - | - | - |
0.5720 | 25600 | 0.3447 | - | - | - | - | - |
0.5765 | 25800 | 0.3531 | - | - | - | - | - |
0.5810 | 26000 | 0.3515 | - | - | - | - | - |
0.5854 | 26200 | 0.3498 | - | - | - | - | - |
0.5899 | 26400 | 0.3491 | - | - | - | - | - |
0.5944 | 26600 | 0.3486 | - | - | - | - | - |
0.5988 | 26800 | 0.3498 | - | - | - | - | - |
0.6033 | 27000 | 0.3461 | - | - | - | - | - |
0.6078 | 27200 | 0.3482 | - | - | - | - | - |
0.6122 | 27400 | 0.3492 | - | - | - | - | - |
0.6167 | 27600 | 0.3455 | - | - | - | - | - |
0.6212 | 27800 | 0.3509 | - | - | - | - | - |
0.6257 | 28000 | 0.3477 | - | - | - | - | - |
0.6301 | 28200 | 0.3485 | - | - | - | - | - |
0.6346 | 28400 | 0.3474 | - | - | - | - | - |
0.6391 | 28600 | 0.3407 | - | - | - | - | - |
0.6435 | 28800 | 0.3398 | - | - | - | - | - |
0.6480 | 29000 | 0.3444 | - | - | - | - | - |
0.6525 | 29200 | 0.3357 | - | - | - | - | - |
0.6569 | 29400 | 0.3481 | - | - | - | - | - |
0.6614 | 29600 | 0.3375 | - | - | - | - | - |
0.6659 | 29800 | 0.341 | - | - | - | - | - |
0.6703 | 30000 | 0.3388 | - | - | - | - | - |
0.6748 | 30200 | 0.329 | - | - | - | - | - |
0.6793 | 30400 | 0.3394 | - | - | - | - | - |
0.6838 | 30600 | 0.3535 | - | - | - | - | - |
0.6882 | 30800 | 0.3436 | - | - | - | - | - |
0.6927 | 31000 | 0.3455 | - | - | - | - | - |
0.6972 | 31200 | 0.3319 | - | - | - | - | - |
0.7016 | 31400 | 0.3376 | - | - | - | - | - |
0.7061 | 31600 | 0.337 | - | - | - | - | - |
0.7106 | 31800 | 0.3387 | - | - | - | - | - |
0.7150 | 32000 | 0.3398 | - | - | - | - | - |
0.7195 | 32200 | 0.3359 | - | - | - | - | - |
0.7240 | 32400 | 0.3327 | - | - | - | - | - |
0.7284 | 32600 | 0.3343 | - | - | - | - | - |
0.7329 | 32800 | 0.3285 | - | - | - | - | - |
0.7374 | 33000 | 0.3332 | - | - | - | - | - |
0.7418 | 33200 | 0.3291 | - | - | - | - | - |
0.7463 | 33400 | 0.3445 | - | - | - | - | - |
0.7508 | 33600 | 0.3372 | - | - | - | - | - |
0.7553 | 33800 | 0.3258 | - | - | - | - | - |
0.7597 | 34000 | 0.3352 | - | - | - | - | - |
0.7642 | 34200 | 0.3344 | - | - | - | - | - |
0.7687 | 34400 | 0.329 | - | - | - | - | - |
0.7731 | 34600 | 0.3301 | - | - | - | - | - |
0.7776 | 34800 | 0.3312 | - | - | - | - | - |
0.7821 | 35000 | 0.3242 | - | - | - | - | - |
0.7865 | 35200 | 0.3349 | - | - | - | - | - |
0.7910 | 35400 | 0.3288 | - | - | - | - | - |
0.7955 | 35600 | 0.3289 | - | - | - | - | - |
0.7999 | 35800 | 0.3209 | - | - | - | - | - |
0.8044 | 36000 | 0.3279 | - | - | - | - | - |
0.8089 | 36200 | 0.3274 | - | - | - | - | - |
0.8134 | 36400 | 0.3355 | - | - | - | - | - |
0.8178 | 36600 | 0.3265 | - | - | - | - | - |
0.8223 | 36800 | 0.3263 | - | - | - | - | - |
0.8268 | 37000 | 0.3301 | - | - | - | - | - |
0.8312 | 37200 | 0.3209 | - | - | - | - | - |
0.8357 | 37400 | 0.3172 | - | - | - | - | - |
0.8402 | 37600 | 0.332 | - | - | - | - | - |
0.8446 | 37800 | 0.3345 | - | - | - | - | - |
0.8491 | 38000 | 0.3311 | - | - | - | - | - |
0.8536 | 38200 | 0.3208 | - | - | - | - | - |
0.8580 | 38400 | 0.3301 | - | - | - | - | - |
0.8625 | 38600 | 0.3279 | - | - | - | - | - |
0.8670 | 38800 | 0.3251 | - | - | - | - | - |
0.8714 | 39000 | 0.3264 | - | - | - | - | - |
0.8759 | 39200 | 0.3247 | - | - | - | - | - |
0.8804 | 39400 | 0.3267 | - | - | - | - | - |
0.8849 | 39600 | 0.3311 | - | - | - | - | - |
0.8893 | 39800 | 0.3218 | - | - | - | - | - |
0.8938 | 40000 | 0.3249 | - | - | - | - | - |
0.8983 | 40200 | 0.3314 | - | - | - | - | - |
0.9027 | 40400 | 0.3189 | - | - | - | - | - |
0.9072 | 40600 | 0.3187 | - | - | - | - | - |
0.9117 | 40800 | 0.3154 | - | - | - | - | - |
0.9161 | 41000 | 0.3206 | - | - | - | - | - |
0.9206 | 41200 | 0.3251 | - | - | - | - | - |
0.9251 | 41400 | 0.3236 | - | - | - | - | - |
0.9295 | 41600 | 0.3292 | - | - | - | - | - |
0.9340 | 41800 | 0.3309 | - | - | - | - | - |
0.9385 | 42000 | 0.3204 | - | - | - | - | - |
0.9430 | 42200 | 0.3223 | - | - | - | - | - |
0.9474 | 42400 | 0.3155 | - | - | - | - | - |
0.9519 | 42600 | 0.322 | - | - | - | - | - |
0.9564 | 42800 | 0.3204 | - | - | - | - | - |
0.9608 | 43000 | 0.3249 | - | - | - | - | - |
0.9653 | 43200 | 0.3244 | - | - | - | - | - |
0.9698 | 43400 | 0.3208 | - | - | - | - | - |
0.9742 | 43600 | 0.3295 | - | - | - | - | - |
0.9787 | 43800 | 0.3283 | - | - | - | - | - |
0.9832 | 44000 | 0.3188 | - | - | - | - | - |
0.9876 | 44200 | 0.321 | - | - | - | - | - |
0.9921 | 44400 | 0.3178 | - | - | - | - | - |
0.9966 | 44600 | 0.326 | - | - | - | - | - |
-1 | -1 | - | 0.5236 (+0.2141) | 0.4928 (-0.0477) | 0.3782 (+0.0531) | 0.4617 (-0.0390) | 0.4442 (-0.0112) |
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The HF Inference API does not support text-ranking models for sentence-transformers
library.
Model tree for ayushexel/reranker-ModernBERT-base-gooaq-1-epoch-1995000
Base model
answerdotai/ModernBERT-baseEvaluation results
- Map on gooaq devself-reported0.483
- Mrr@10 on gooaq devself-reported0.482
- Ndcg@10 on gooaq devself-reported0.524
- Map on NanoMSMARCO R100self-reported0.430
- Mrr@10 on NanoMSMARCO R100self-reported0.415
- Ndcg@10 on NanoMSMARCO R100self-reported0.493
- Map on NanoNFCorpus R100self-reported0.368
- Mrr@10 on NanoNFCorpus R100self-reported0.448
- Ndcg@10 on NanoNFCorpus R100self-reported0.378
- Map on NanoNQ R100self-reported0.422