tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9461702
- loss:Contrastive
base_model: answerdotai/ModernBERT-base
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- accuracy
model-index:
- name: PyLate model based on answerdotai/ModernBERT-base
results:
- task:
type: col-berttriplet
name: Col BERTTriplet
dataset:
name: Unknown
type: unknown
metrics:
- type: accuracy
value: 0.5281999707221985
name: Accuracy
PyLate model based on answerdotai/ModernBERT-base
This is a PyLate model finetuned from answerdotai/ModernBERT-base. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: answerdotai/ModernBERT-base
- Document Length: 180 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=ayushexel/colbert-ModernBERT-base-5-neg-1-epoch-gooaq-1995000,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=ayushexel/colbert-ModernBERT-base-5-neg-1-epoch-gooaq-1995000,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Col BERTTriplet
- Evaluated with
pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator
Metric | Value |
---|---|
accuracy | 0.5282 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 9,461,702 training samples
- Columns:
question
,answer
, andnegative
- Approximate statistics based on the first 1000 samples:
question answer negative type string string string details - min: 9 tokens
- mean: 13.05 tokens
- max: 19 tokens
- min: 25 tokens
- mean: 31.88 tokens
- max: 32 tokens
- min: 16 tokens
- mean: 31.67 tokens
- max: 32 tokens
- Samples:
question answer negative what is the maximum income you can make while collecting social security?
The Social Security earnings limit is $1,470 per month or $17,640 per year in 2019 for someone age 65 or younger. If you earn more than this amount, you can expect to have $1 withheld from your Social Security benefit for every $2 earned above the limit.
Once you reach FRA, there is no cap on how much you can earn and still receive your full Social Security benefit. The earnings limits are adjusted annually for national wage trends. In 2020, you lose $1 in benefits for every $2 earned over $18,240.
what is the maximum income you can make while collecting social security?
The Social Security earnings limit is $1,470 per month or $17,640 per year in 2019 for someone age 65 or younger. If you earn more than this amount, you can expect to have $1 withheld from your Social Security benefit for every $2 earned above the limit.
You can get Social Security retirement or survivors benefits and work at the same time. However, there is a limit to how much you can earn and still receive full benefits. If you are younger than full retirement age and earn more than the yearly earnings limit, we may reduce your benefit amount.
what is the maximum income you can make while collecting social security?
The Social Security earnings limit is $1,470 per month or $17,640 per year in 2019 for someone age 65 or younger. If you earn more than this amount, you can expect to have $1 withheld from your Social Security benefit for every $2 earned above the limit.
If you haven't yet reached full retirement age, you can earn up to $17,640 in income each year without any reduction in benefits. But for each $2 you earn above this limit, the Social Security Administration deducts $1 from your benefit payments. Under full retirement age for part of a year.
- Loss:
pylate.losses.contrastive.Contrastive
Evaluation Dataset
Unnamed Dataset
- Size: 5,000 evaluation samples
- Columns:
question
,answer
, andnegative_1
- Approximate statistics based on the first 1000 samples:
question answer negative_1 type string string string details - min: 9 tokens
- mean: 12.93 tokens
- max: 22 tokens
- min: 17 tokens
- mean: 31.7 tokens
- max: 32 tokens
- min: 14 tokens
- mean: 31.4 tokens
- max: 32 tokens
- Samples:
question answer negative_1 are bird scooters in nyc?
New York State is on the verge of embracing electric scooters and bicycles in a victory for tech leaders and delivery workers who have fought for months to make the speedy devices legal. ... There is just one catch — scooter rental companies like Bird and Lime cannot operate in Manhattan.
New York State is on the verge of embracing electric scooters and bicycles in a victory for tech leaders and delivery workers who have fought for months to make the speedy devices legal. ... There is just one catch — scooter rental companies like Bird and Lime cannot operate in Manhattan.
can you go into a bar if you're 18?
You can enter a bar at 18 but you cannot consume alcoholic beverages until you are 21. ... Some states will make some exceptions for a parent allowing you to drink from their alcoholic beverage, but it is best to not do that in public places if you are under the age of 21 in the USA.
1. Re: How old do you have to be to enter a club, bar, pub? Generally 18 is fine, though some upscale bars may extend that to 21. Pubs don't have an age limit to enter, but you may get carded if ordering alcohol.
how are blood pressure numbers written and recorded?
Blood pressure is recorded as two numbers and written as a ratio: the top number, called the systolic pressure, is the pressure as the heart beats. The bottom number, called the diastolic pressure, is the measurement as the heart relaxes between beats.
Blood pressure is recorded with 2 numbers. The systolic pressure (higher number) is the force at which your heart pumps blood around your body. The diastolic pressure (lower number) is the resistance to the blood flow in the blood vessels.
- Loss:
pylate.losses.contrastive.Contrastive
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 3e-06num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 12load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 12dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | accuracy |
---|---|---|---|---|
0 | 0 | - | - | 0.4558 |
0.0000 | 1 | 17.2657 | - | - |
0.0027 | 200 | 17.0631 | - | - |
0.0054 | 400 | 11.2015 | - | - |
0.0081 | 600 | 7.8228 | - | - |
0.0108 | 800 | 6.0774 | - | - |
0.0135 | 1000 | 5.3122 | - | - |
0.0162 | 1200 | 4.3348 | - | - |
0.0189 | 1400 | 2.6982 | - | - |
0.0216 | 1600 | 1.7959 | - | - |
0.0244 | 1800 | 1.3555 | - | - |
0.0271 | 2000 | 1.1443 | - | - |
0.0298 | 2200 | 1.0092 | - | - |
0.0325 | 2400 | 0.9274 | - | - |
0.0352 | 2600 | 0.8485 | - | - |
0.0379 | 2800 | 0.7953 | - | - |
0.0406 | 3000 | 0.7541 | - | - |
0.0433 | 3200 | 0.7302 | - | - |
0.0460 | 3400 | 0.6836 | - | - |
0.0487 | 3600 | 0.6546 | - | - |
0.0514 | 3800 | 0.6219 | - | - |
0.0541 | 4000 | 0.6116 | - | - |
0.0568 | 4200 | 0.5813 | - | - |
0.0595 | 4400 | 0.5499 | - | - |
0.0622 | 4600 | 0.5334 | - | - |
0.0649 | 4800 | 0.5276 | - | - |
0.0676 | 5000 | 0.4969 | - | - |
0.0703 | 5200 | 0.4789 | - | - |
0.0731 | 5400 | 0.4709 | - | - |
0.0758 | 5600 | 0.4598 | - | - |
0.0785 | 5800 | 0.4465 | - | - |
0.0812 | 6000 | 0.4333 | - | - |
0.0839 | 6200 | 0.4258 | - | - |
0.0866 | 6400 | 0.4056 | - | - |
0.0893 | 6600 | 0.3855 | - | - |
0.0920 | 6800 | 0.3855 | - | - |
0.0947 | 7000 | 0.3761 | - | - |
0.0974 | 7200 | 0.369 | - | - |
0.1001 | 7400 | 0.3531 | - | - |
0.1028 | 7600 | 0.3549 | - | - |
0.1055 | 7800 | 0.3342 | - | - |
0.1082 | 8000 | 0.3289 | - | - |
0.1109 | 8200 | 0.3231 | - | - |
0.1136 | 8400 | 0.3197 | - | - |
0.1163 | 8600 | 0.3066 | - | - |
0.1190 | 8800 | 0.309 | - | - |
0.1218 | 9000 | 0.2953 | - | - |
0.1245 | 9200 | 0.284 | - | - |
0.1272 | 9400 | 0.2841 | - | - |
0.1299 | 9600 | 0.2842 | - | - |
0.1326 | 9800 | 0.2764 | - | - |
0.1353 | 10000 | 0.2737 | - | - |
0.1380 | 10200 | 0.2673 | - | - |
0.1407 | 10400 | 0.2556 | - | - |
0.1434 | 10600 | 0.2613 | - | - |
0.1461 | 10800 | 0.2559 | - | - |
0.1488 | 11000 | 0.2557 | - | - |
0.1515 | 11200 | 0.2496 | - | - |
0.1542 | 11400 | 0.2411 | - | - |
0.1569 | 11600 | 0.2446 | - | - |
0.1596 | 11800 | 0.2384 | - | - |
0.1623 | 12000 | 0.2267 | - | - |
0.1650 | 12200 | 0.2401 | - | - |
0.1677 | 12400 | 0.2338 | - | - |
0.1705 | 12600 | 0.2306 | - | - |
0.1732 | 12800 | 0.2259 | - | - |
0.1759 | 13000 | 0.2278 | - | - |
0.1786 | 13200 | 0.2172 | - | - |
0.1813 | 13400 | 0.2254 | - | - |
0.1840 | 13600 | 0.2232 | - | - |
0.1867 | 13800 | 0.2106 | - | - |
0.1894 | 14000 | 0.2187 | - | - |
0.1921 | 14200 | 0.2147 | - | - |
0.1948 | 14400 | 0.2043 | - | - |
0.1975 | 14600 | 0.2017 | - | - |
0.2002 | 14800 | 0.2071 | - | - |
0.2029 | 15000 | 0.2016 | - | - |
0.2056 | 15200 | 0.1994 | - | - |
0.2083 | 15400 | 0.2018 | - | - |
0.2110 | 15600 | 0.1946 | - | - |
0.2137 | 15800 | 0.1911 | - | - |
0.2165 | 16000 | 0.1828 | - | - |
0.2192 | 16200 | 0.1878 | - | - |
0.2219 | 16400 | 0.1839 | - | - |
0.2246 | 16600 | 0.1939 | - | - |
0.2273 | 16800 | 0.1842 | - | - |
0.2300 | 17000 | 0.1912 | - | - |
0.2327 | 17200 | 0.1851 | - | - |
0.2354 | 17400 | 0.1863 | - | - |
0.2381 | 17600 | 0.1829 | - | - |
0.2408 | 17800 | 0.1829 | - | - |
0.2435 | 18000 | 0.177 | - | - |
0.2462 | 18200 | 0.1768 | - | - |
0.2489 | 18400 | 0.1819 | - | - |
0.2516 | 18600 | 0.1778 | - | - |
0.2543 | 18800 | 0.1803 | - | - |
0.2570 | 19000 | 0.1758 | - | - |
0.2597 | 19200 | 0.1736 | - | - |
0.2624 | 19400 | 0.1759 | - | - |
0.2652 | 19600 | 0.1751 | - | - |
0.2679 | 19800 | 0.1739 | - | - |
0.2706 | 20000 | 0.1677 | - | - |
0 | 0 | - | - | 0.5018 |
0.2706 | 20000 | - | 1.0521 | - |
0.2733 | 20200 | 0.1681 | - | - |
0.2760 | 20400 | 0.1672 | - | - |
0.2787 | 20600 | 0.1695 | - | - |
0.2814 | 20800 | 0.1696 | - | - |
0.2841 | 21000 | 0.1662 | - | - |
0.2868 | 21200 | 0.1612 | - | - |
0.2895 | 21400 | 0.1678 | - | - |
0.2922 | 21600 | 0.1617 | - | - |
0.2949 | 21800 | 0.1635 | - | - |
0.2976 | 22000 | 0.1622 | - | - |
0.3003 | 22200 | 0.1647 | - | - |
0.3030 | 22400 | 0.1634 | - | - |
0.3057 | 22600 | 0.1597 | - | - |
0.3084 | 22800 | 0.1616 | - | - |
0.3111 | 23000 | 0.1538 | - | - |
0.3139 | 23200 | 0.1601 | - | - |
0.3166 | 23400 | 0.1583 | - | - |
0.3193 | 23600 | 0.161 | - | - |
0.3220 | 23800 | 0.1539 | - | - |
0.3247 | 24000 | 0.1602 | - | - |
0.3274 | 24200 | 0.1493 | - | - |
0.3301 | 24400 | 0.1536 | - | - |
0.3328 | 24600 | 0.1572 | - | - |
0.3355 | 24800 | 0.1577 | - | - |
0.3382 | 25000 | 0.1508 | - | - |
0.3409 | 25200 | 0.1514 | - | - |
0.3436 | 25400 | 0.1506 | - | - |
0.3463 | 25600 | 0.1544 | - | - |
0.3490 | 25800 | 0.1574 | - | - |
0.3517 | 26000 | 0.1507 | - | - |
0.3544 | 26200 | 0.1462 | - | - |
0.3571 | 26400 | 0.1527 | - | - |
0.3598 | 26600 | 0.1474 | - | - |
0.3626 | 26800 | 0.1516 | - | - |
0.3653 | 27000 | 0.1447 | - | - |
0.3680 | 27200 | 0.1484 | - | - |
0.3707 | 27400 | 0.1454 | - | - |
0.3734 | 27600 | 0.1467 | - | - |
0.3761 | 27800 | 0.1517 | - | - |
0.3788 | 28000 | 0.1505 | - | - |
0.3815 | 28200 | 0.1395 | - | - |
0.3842 | 28400 | 0.145 | - | - |
0.3869 | 28600 | 0.143 | - | - |
0.3896 | 28800 | 0.1417 | - | - |
0.3923 | 29000 | 0.142 | - | - |
0.3950 | 29200 | 0.1401 | - | - |
0.3977 | 29400 | 0.1399 | - | - |
0.4004 | 29600 | 0.1437 | - | - |
0.4031 | 29800 | 0.1399 | - | - |
0.4058 | 30000 | 0.1394 | - | - |
0.4085 | 30200 | 0.1373 | - | - |
0.4113 | 30400 | 0.1388 | - | - |
0.4140 | 30600 | 0.1384 | - | - |
0.4167 | 30800 | 0.1434 | - | - |
0.4194 | 31000 | 0.1398 | - | - |
0.4221 | 31200 | 0.1476 | - | - |
0.4248 | 31400 | 0.1387 | - | - |
0.4275 | 31600 | 0.1346 | - | - |
0.4302 | 31800 | 0.137 | - | - |
0.4329 | 32000 | 0.135 | - | - |
0.4356 | 32200 | 0.1363 | - | - |
0.4383 | 32400 | 0.1336 | - | - |
0.4410 | 32600 | 0.1323 | - | - |
0.4437 | 32800 | 0.1371 | - | - |
0.4464 | 33000 | 0.1305 | - | - |
0.4491 | 33200 | 0.1315 | - | - |
0.4518 | 33400 | 0.1366 | - | - |
0.4545 | 33600 | 0.1336 | - | - |
0.4573 | 33800 | 0.1349 | - | - |
0.4600 | 34000 | 0.1338 | - | - |
0.4627 | 34200 | 0.1388 | - | - |
0.4654 | 34400 | 0.1312 | - | - |
0.4681 | 34600 | 0.1299 | - | - |
0.4708 | 34800 | 0.1325 | - | - |
0.4735 | 35000 | 0.1277 | - | - |
0.4762 | 35200 | 0.132 | - | - |
0.4789 | 35400 | 0.1322 | - | - |
0.4816 | 35600 | 0.1286 | - | - |
0.4843 | 35800 | 0.1322 | - | - |
0.4870 | 36000 | 0.1342 | - | - |
0.4897 | 36200 | 0.1306 | - | - |
0.4924 | 36400 | 0.1339 | - | - |
0.4951 | 36600 | 0.1327 | - | - |
0.4978 | 36800 | 0.129 | - | - |
0.5005 | 37000 | 0.1301 | - | - |
0.5032 | 37200 | 0.1266 | - | - |
0.5060 | 37400 | 0.1295 | - | - |
0.5087 | 37600 | 0.1263 | - | - |
0.5114 | 37800 | 0.1321 | - | - |
0.5141 | 38000 | 0.1213 | - | - |
0.5168 | 38200 | 0.1253 | - | - |
0.5195 | 38400 | 0.13 | - | - |
0.5222 | 38600 | 0.1234 | - | - |
0.5249 | 38800 | 0.1259 | - | - |
0.5276 | 39000 | 0.1303 | - | - |
0.5303 | 39200 | 0.1268 | - | - |
0.5330 | 39400 | 0.1229 | - | - |
0.5357 | 39600 | 0.1291 | - | - |
0.5384 | 39800 | 0.1257 | - | - |
0.5411 | 40000 | 0.1249 | - | - |
0 | 0 | - | - | 0.5130 |
0.5411 | 40000 | - | 1.0519 | - |
0.5438 | 40200 | 0.1259 | - | - |
0.5465 | 40400 | 0.1253 | - | - |
0.5492 | 40600 | 0.1229 | - | - |
0.5519 | 40800 | 0.1296 | - | - |
0.5547 | 41000 | 0.1222 | - | - |
0.5574 | 41200 | 0.1216 | - | - |
0.5601 | 41400 | 0.1226 | - | - |
0.5628 | 41600 | 0.1256 | - | - |
0.5655 | 41800 | 0.1198 | - | - |
0.5682 | 42000 | 0.1275 | - | - |
0.5709 | 42200 | 0.1222 | - | - |
0.5736 | 42400 | 0.1229 | - | - |
0.5763 | 42600 | 0.123 | - | - |
0.5790 | 42800 | 0.1162 | - | - |
0.5817 | 43000 | 0.1234 | - | - |
0.5844 | 43200 | 0.1253 | - | - |
0.5871 | 43400 | 0.1221 | - | - |
0.5898 | 43600 | 0.1223 | - | - |
0.5925 | 43800 | 0.1244 | - | - |
0.5952 | 44000 | 0.1254 | - | - |
0.5979 | 44200 | 0.1227 | - | - |
0.6006 | 44400 | 0.1168 | - | - |
0.6034 | 44600 | 0.1184 | - | - |
0.6061 | 44800 | 0.1191 | - | - |
0.6088 | 45000 | 0.1174 | - | - |
0.6115 | 45200 | 0.1103 | - | - |
0.6142 | 45400 | 0.1181 | - | - |
0.6169 | 45600 | 0.1192 | - | - |
0.6196 | 45800 | 0.1206 | - | - |
0.6223 | 46000 | 0.1196 | - | - |
0.625 | 46200 | 0.1199 | - | - |
0.6277 | 46400 | 0.1226 | - | - |
0.6304 | 46600 | 0.1174 | - | - |
0.6331 | 46800 | 0.118 | - | - |
0.6358 | 47000 | 0.1185 | - | - |
0.6385 | 47200 | 0.1193 | - | - |
0.6412 | 47400 | 0.1181 | - | - |
0.6439 | 47600 | 0.1228 | - | - |
0.6466 | 47800 | 0.1235 | - | - |
0.6494 | 48000 | 0.1191 | - | - |
0.6521 | 48200 | 0.1142 | - | - |
0.6548 | 48400 | 0.1166 | - | - |
0.6575 | 48600 | 0.1218 | - | - |
0.6602 | 48800 | 0.1189 | - | - |
0.6629 | 49000 | 0.1196 | - | - |
0.6656 | 49200 | 0.1153 | - | - |
0.6683 | 49400 | 0.1132 | - | - |
0.6710 | 49600 | 0.1191 | - | - |
0.6737 | 49800 | 0.1148 | - | - |
0.6764 | 50000 | 0.1087 | - | - |
0.6791 | 50200 | 0.1145 | - | - |
0.6818 | 50400 | 0.1175 | - | - |
0.6845 | 50600 | 0.1145 | - | - |
0.6872 | 50800 | 0.1175 | - | - |
0.6899 | 51000 | 0.1131 | - | - |
0.6926 | 51200 | 0.112 | - | - |
0.6953 | 51400 | 0.1165 | - | - |
0.6981 | 51600 | 0.124 | - | - |
0.7008 | 51800 | 0.1129 | - | - |
0.7035 | 52000 | 0.1111 | - | - |
0.7062 | 52200 | 0.1143 | - | - |
0.7089 | 52400 | 0.1118 | - | - |
0.7116 | 52600 | 0.116 | - | - |
0.7143 | 52800 | 0.1181 | - | - |
0.7170 | 53000 | 0.1145 | - | - |
0.7197 | 53200 | 0.1161 | - | - |
0.7224 | 53400 | 0.1124 | - | - |
0.7251 | 53600 | 0.1123 | - | - |
0.7278 | 53800 | 0.1115 | - | - |
0.7305 | 54000 | 0.1119 | - | - |
0.7332 | 54200 | 0.114 | - | - |
0.7359 | 54400 | 0.1145 | - | - |
0.7386 | 54600 | 0.1095 | - | - |
0.7413 | 54800 | 0.1199 | - | - |
0.7440 | 55000 | 0.1129 | - | - |
0.7468 | 55200 | 0.1147 | - | - |
0.7495 | 55400 | 0.1091 | - | - |
0.7522 | 55600 | 0.11 | - | - |
0.7549 | 55800 | 0.1061 | - | - |
0.7576 | 56000 | 0.1136 | - | - |
0.7603 | 56200 | 0.112 | - | - |
0.7630 | 56400 | 0.1116 | - | - |
0.7657 | 56600 | 0.1132 | - | - |
0.7684 | 56800 | 0.1067 | - | - |
0.7711 | 57000 | 0.1116 | - | - |
0.7738 | 57200 | 0.1119 | - | - |
0.7765 | 57400 | 0.1097 | - | - |
0.7792 | 57600 | 0.1095 | - | - |
0.7819 | 57800 | 0.1101 | - | - |
0.7846 | 58000 | 0.1121 | - | - |
0.7873 | 58200 | 0.1118 | - | - |
0.7900 | 58400 | 0.1152 | - | - |
0.7927 | 58600 | 0.1106 | - | - |
0.7955 | 58800 | 0.1106 | - | - |
0.7982 | 59000 | 0.1117 | - | - |
0.8009 | 59200 | 0.1089 | - | - |
0.8036 | 59400 | 0.1087 | - | - |
0.8063 | 59600 | 0.111 | - | - |
0.8090 | 59800 | 0.1095 | - | - |
0.8117 | 60000 | 0.1144 | - | - |
0 | 0 | - | - | 0.5282 |
0.8117 | 60000 | - | 1.0542 | - |
0.8144 | 60200 | 0.1134 | - | - |
0.8171 | 60400 | 0.1107 | - | - |
0.8198 | 60600 | 0.1102 | - | - |
0.8225 | 60800 | 0.1088 | - | - |
0.8252 | 61000 | 0.1123 | - | - |
0.8279 | 61200 | 0.1081 | - | - |
0.8306 | 61400 | 0.1097 | - | - |
0.8333 | 61600 | 0.1077 | - | - |
0.8360 | 61800 | 0.1069 | - | - |
0.8387 | 62000 | 0.109 | - | - |
0.8415 | 62200 | 0.1086 | - | - |
0.8442 | 62400 | 0.1144 | - | - |
0.8469 | 62600 | 0.107 | - | - |
0.8496 | 62800 | 0.1064 | - | - |
0.8523 | 63000 | 0.1077 | - | - |
0.8550 | 63200 | 0.1044 | - | - |
0.8577 | 63400 | 0.103 | - | - |
0.8604 | 63600 | 0.1106 | - | - |
0.8631 | 63800 | 0.1137 | - | - |
0.8658 | 64000 | 0.1109 | - | - |
0.8685 | 64200 | 0.112 | - | - |
0.8712 | 64400 | 0.1111 | - | - |
0.8739 | 64600 | 0.1073 | - | - |
0.8766 | 64800 | 0.1067 | - | - |
0.8793 | 65000 | 0.1084 | - | - |
0.8820 | 65200 | 0.1081 | - | - |
0.8847 | 65400 | 0.1096 | - | - |
0.8874 | 65600 | 0.1084 | - | - |
0.8902 | 65800 | 0.1014 | - | - |
0.8929 | 66000 | 0.1071 | - | - |
0.8956 | 66200 | 0.1043 | - | - |
0.8983 | 66400 | 0.1112 | - | - |
0.9010 | 66600 | 0.1089 | - | - |
0.9037 | 66800 | 0.1086 | - | - |
0.9064 | 67000 | 0.1025 | - | - |
0.9091 | 67200 | 0.1024 | - | - |
0.9118 | 67400 | 0.1101 | - | - |
0.9145 | 67600 | 0.1075 | - | - |
0.9172 | 67800 | 0.1059 | - | - |
0.9199 | 68000 | 0.1085 | - | - |
0.9226 | 68200 | 0.1036 | - | - |
0.9253 | 68400 | 0.1056 | - | - |
0.9280 | 68600 | 0.1071 | - | - |
0.9307 | 68800 | 0.1065 | - | - |
0.9334 | 69000 | 0.1117 | - | - |
0.9361 | 69200 | 0.1074 | - | - |
0.9389 | 69400 | 0.1021 | - | - |
0.9416 | 69600 | 0.1081 | - | - |
0.9443 | 69800 | 0.1071 | - | - |
0.9470 | 70000 | 0.1056 | - | - |
0.9497 | 70200 | 0.1108 | - | - |
0.9524 | 70400 | 0.1093 | - | - |
0.9551 | 70600 | 0.1065 | - | - |
0.9578 | 70800 | 0.1092 | - | - |
0.9605 | 71000 | 0.1081 | - | - |
0.9632 | 71200 | 0.1031 | - | - |
0.9659 | 71400 | 0.1075 | - | - |
0.9686 | 71600 | 0.1101 | - | - |
0.9713 | 71800 | 0.1063 | - | - |
0.9740 | 72000 | 0.1076 | - | - |
0.9767 | 72200 | 0.1039 | - | - |
0.9794 | 72400 | 0.1102 | - | - |
0.9821 | 72600 | 0.1085 | - | - |
0.9848 | 72800 | 0.1068 | - | - |
0.9876 | 73000 | 0.1062 | - | - |
0.9903 | 73200 | 0.1049 | - | - |
0.9930 | 73400 | 0.1132 | - | - |
0.9957 | 73600 | 0.1095 | - | - |
0.9984 | 73800 | 0.1072 | - | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- PyLate: 1.1.7
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}