Edit model card

swin-tiny-patch4-window7-224-finetuned-st-wsdmhar-stacked

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1344
  • Accuracy: 0.9680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4973 1.0 53 1.3214 0.3743
0.7898 2.0 106 0.7212 0.6753
0.5919 3.0 159 0.5983 0.7317
0.5388 4.0 212 0.4451 0.8209
0.475 5.0 265 0.3542 0.8674
0.4174 6.0 318 0.3148 0.8771
0.3487 7.0 371 0.3107 0.8802
0.3385 8.0 424 0.3179 0.8798
0.3324 9.0 477 0.2846 0.8998
0.3347 10.0 530 0.2837 0.8871
0.2952 11.0 583 0.2412 0.9139
0.282 12.0 636 0.3142 0.8767
0.2679 13.0 689 0.2496 0.9005
0.2816 14.0 742 0.2014 0.9239
0.2989 15.0 795 0.2049 0.9218
0.2634 16.0 848 0.2066 0.9232
0.2692 17.0 901 0.1994 0.9284
0.2069 18.0 954 0.1958 0.9304
0.2373 19.0 1007 0.2273 0.9249
0.1992 20.0 1060 0.2094 0.9267
0.1997 21.0 1113 0.1808 0.9387
0.1794 22.0 1166 0.1833 0.9408
0.1736 23.0 1219 0.2456 0.9091
0.2004 24.0 1272 0.1918 0.9294
0.2039 25.0 1325 0.1768 0.9370
0.1829 26.0 1378 0.2090 0.9225
0.1566 27.0 1431 0.1467 0.9456
0.1531 28.0 1484 0.1604 0.9404
0.1553 29.0 1537 0.1612 0.9449
0.1406 30.0 1590 0.1644 0.9494
0.1396 31.0 1643 0.1411 0.9501
0.1049 32.0 1696 0.1616 0.9539
0.1411 33.0 1749 0.1708 0.9446
0.1211 34.0 1802 0.1392 0.9501
0.1113 35.0 1855 0.1369 0.9525
0.1249 36.0 1908 0.1320 0.9535
0.1274 37.0 1961 0.1524 0.9518
0.1191 38.0 2014 0.1438 0.9525
0.0949 39.0 2067 0.1379 0.9573
0.0936 40.0 2120 0.1463 0.9518
0.1008 41.0 2173 0.1681 0.9494
0.0887 42.0 2226 0.1463 0.9566
0.1113 43.0 2279 0.1719 0.9456
0.1087 44.0 2332 0.1343 0.9604
0.097 45.0 2385 0.1431 0.9576
0.1061 46.0 2438 0.1495 0.9580
0.11 47.0 2491 0.1555 0.9549
0.0806 48.0 2544 0.1493 0.9549
0.0979 49.0 2597 0.2320 0.9373
0.0751 50.0 2650 0.1516 0.9573
0.0845 51.0 2703 0.1277 0.9614
0.079 52.0 2756 0.1373 0.9601
0.0818 53.0 2809 0.1569 0.9539
0.0845 54.0 2862 0.1422 0.9604
0.0796 55.0 2915 0.1400 0.9621
0.0975 56.0 2968 0.1375 0.9573
0.0607 57.0 3021 0.1504 0.9580
0.0632 58.0 3074 0.1364 0.9607
0.0542 59.0 3127 0.1278 0.9669
0.0807 60.0 3180 0.1507 0.9518
0.0673 61.0 3233 0.1302 0.9645
0.0773 62.0 3286 0.1388 0.9638
0.0739 63.0 3339 0.1533 0.9573
0.0718 64.0 3392 0.1325 0.9594
0.0719 65.0 3445 0.1304 0.9625
0.0487 66.0 3498 0.1250 0.9645
0.0718 67.0 3551 0.1512 0.9573
0.0851 68.0 3604 0.1299 0.9607
0.0658 69.0 3657 0.1424 0.9625
0.0605 70.0 3710 0.1391 0.9625
0.0732 71.0 3763 0.1320 0.9642
0.0613 72.0 3816 0.1461 0.9607
0.056 73.0 3869 0.1328 0.9635
0.0661 74.0 3922 0.1319 0.9628
0.0581 75.0 3975 0.1337 0.9666
0.0698 76.0 4028 0.1383 0.9645
0.0544 77.0 4081 0.1324 0.9656
0.059 78.0 4134 0.1380 0.9645
0.0554 79.0 4187 0.1435 0.9638
0.0497 80.0 4240 0.1310 0.9649
0.0463 81.0 4293 0.1384 0.9604
0.0622 82.0 4346 0.1363 0.9628
0.0534 83.0 4399 0.1428 0.9635
0.0434 84.0 4452 0.1374 0.9656
0.0591 85.0 4505 0.1332 0.9663
0.0488 86.0 4558 0.1271 0.9697
0.0418 87.0 4611 0.1286 0.9669
0.0505 88.0 4664 0.1372 0.9676
0.0486 89.0 4717 0.1372 0.9676
0.0561 90.0 4770 0.1348 0.9680
0.0498 91.0 4823 0.1340 0.9669
0.0432 92.0 4876 0.1351 0.9621
0.0322 93.0 4929 0.1380 0.9659
0.0389 94.0 4982 0.1370 0.9656
0.0408 95.0 5035 0.1343 0.9683
0.0367 96.0 5088 0.1347 0.9680
0.0337 97.0 5141 0.1366 0.9669
0.0338 98.0 5194 0.1355 0.9669
0.0284 99.0 5247 0.1340 0.9676
0.0501 100.0 5300 0.1344 0.9680

Framework versions

  • Transformers 4.43.2
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ayubkfupm/swin-tiny-patch4-window7-224-finetuned-st-wsdmhar-stacked

Finetuned
(465)
this model

Evaluation results