Text Generation
Safetensors
English
llama
llama3.1
sonnet
claude
conversational
Llama3.1-8B-Sonnet / README.md
ayan4m1's picture
Update README.md
ac9071c verified
|
raw
history blame
3.47 kB
metadata
base_model: meta-llama/Llama-3.1-8B
datasets:
  - mlfoundations-dev/oh-dcft-v3.1-claude-3-5-sonnet-20241022
  - mpasila/Sonnet3.5-SlimOrcaDedupCleaned-4k-context
language:
  - en
license: mit
pipeline_tag: text-generation
tags:
  - llama3.1
  - sonnet
  - claude
quantized_by: ayan4m1
inference: false
fine-tuning: true

GGUF Quantizations of Llama-3.1-8B Sonnet fine-tuning

Using unsloth for fine-tuning and quantization:

==((====))==  Unsloth 2025.2.4: Fast Llama patching. Transformers: 4.48.2.
   \\   /|    GPU: NVIDIA A100-SXM4-40GB. Max memory: 39.557 GB. Platform: Linux.
O^O/ \_/ \    Torch: 2.5.1+cu124. CUDA: 8.0. CUDA Toolkit: 12.4. Triton: 3.1.0
\        /    Bfloat16 = TRUE. FA [Xformers = 0.0.29. FA2 = False]
 "-____-"     Free Apache license: http://github.com/unslothai/unsloth

Original model: https://huggingface.co/meta-llama/Llama-3.1-8B

Applied open Sonnet datasets containing ~1.2mn question/answer pairs for fine-tuning.

Prompt format

<|begin_of_text|>{prompt}

Download a file (not the whole branch) from below:

Filename Quant type File Size Split Description
Llama-3.1-8B-Sonnet-Q8_0.gguf Q8_0 74.98GB true Extremely high quality, generally unneeded but max available quant.
Llama-3.1-8B-Sonnet-Q6_K.gguf Q6_K 57.89GB true Very high quality, near perfect, recommended.
Llama-3.1-8B-Sonnet-Q5_K_M.gguf Q5_K_M 49.95GB true High quality, recommended.
Llama-3.1-8B-Sonnet-Q4_K_M.gguf Q4_K_M 42.52GB false Good quality, default size for must use cases, recommended.
Llama-3.1-8B-Sonnet-Q3_K_L.gguf Q3_K_L 37.14GB false Lower quality but usable, good for low RAM availability.
Llama-3.1-8B-Sonnet-Q3_K_M.gguf Q3_K_M 30.91GB false Lower quality, not recommended.
Llama-3.1-8B-Sonnet-Q2_K.gguf Q2_K 26.38GB false Very low quality but surprisingly usable.

Credits

Thanks to Meta and mlfoundations-dev for providing the data used to create this fine-tuning.

Thanks to bartowski for this README template.