llama-3.2-3B-GLR (GRPO Legal Reasoning)
This repository provides a Llama 3.2 3B model fine-tuned on a legal Q&A dataset using GRPO (Group Relative Policy Optimization) and LoRA adapters for legal_reasoning outputs.
Usage
Download the files first, then run the below code in inference.py
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("legal-grpo/checkpoint-500")
model = AutoModelForCausalLM.from_pretrained("legal-grpo/checkpoint-500")
prompt = """
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are a legal assistant. Provide legal information in this format:
<legal_analysis>...analysis...</legal_analysis>
<answer>...final answer...</answer>
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
What are the elements of a valid contract?
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
"""
user_question = "What are the elements of a valid contract?"
system_prompt = f"""{prompt} + {user_question}"""
inputs = tokenizer(system_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
response = tokenizer.decode(outputs[0])
print(response)
Model Details
- Base Model: meta-llama/Llama-3.2-3B-Instruct
- Fine-tuning: GRPO with LoRA adapters
- Dataset: Legal Q&A axondendriteplus/legal-qna-dataset
- Output Format: Structured with
<legal_analysis>...</legal_analysis>
and<answer>...</answer>
tags
Training
- Reward model uses Gemini's (gemini-2.5-flash-preview-04-17) for evaluating accuracy, completeness, and quality during training.
- LoRA adapters are used for efficient fine-tuning.
Inference
- See
inference.py
for a ready-to-use example.
Training procedure
This model was trained with GRPO, a method introduced in DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models.
Citations
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for axondendriteplus/llama-3.2-3B-GLR
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct