File size: 2,677 Bytes
6e41fb6
 
 
 
 
 
 
 
 
 
 
 
892b950
6e41fb6
 
892b950
6e41fb6
892b950
e59790e
 
 
 
 
 
6e41fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: protBERTbfd_AAV2_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# protBERTbfd_AAV2_classification

This model is a fine-tuned version of [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd) on AAV2 dataset with ~230k sequences (Bryant et al 2020). 

The WT sequence (aa561-588): D E E E I R T T N P V A T E Q Y G S V S T N L Q R G N R
Maximum length: 50

It achieves the following results on the evaluation set. Note:this is result of the last epoch, I think the pushed model is loaded with best checkpoint - best val_loss, I'm not so sure though :/
- Loss: 0.1341
- Accuracy: 0.9615
- F1: 0.9627
- Precision: 0.9637
- Recall: 0.9618
- Auroc: 0.9615

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Auroc  |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
| No log        | 1.0   | 116  | 0.2582          | 0.9064   | 0.9157 | 0.8564    | 0.9839 | 0.9038 |
| No log        | 2.0   | 232  | 0.1447          | 0.9424   | 0.9432 | 0.9618    | 0.9252 | 0.9430 |
| No log        | 3.0   | 348  | 0.1182          | 0.9542   | 0.9556 | 0.9573    | 0.9539 | 0.9542 |
| No log        | 4.0   | 464  | 0.1129          | 0.9585   | 0.9602 | 0.9520    | 0.9685 | 0.9581 |
| 0.2162        | 5.0   | 580  | 0.1278          | 0.9553   | 0.9558 | 0.9776    | 0.9351 | 0.9561 |
| 0.2162        | 6.0   | 696  | 0.1139          | 0.9587   | 0.9607 | 0.9465    | 0.9752 | 0.9581 |
| 0.2162        | 7.0   | 812  | 0.1127          | 0.9620   | 0.9633 | 0.9614    | 0.9652 | 0.9619 |
| 0.2162        | 8.0   | 928  | 0.1341          | 0.9615   | 0.9627 | 0.9637    | 0.9618 | 0.9615 |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1