avuhong commited on
Commit
6e41fb6
·
1 Parent(s): 04bb746

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -4
README.md CHANGED
@@ -1,7 +1,76 @@
1
- Embedding taken from protBERT-BFD pretrained model
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- Classification task was trained on AAV2 dataset ~230k sequences (Bryant et al 2020)
 
4
 
5
- AAV2 WT sequence (pdb 6IH9: aa561-588): D E E E I R T T N P V A T E Q Y G S V S T N L Q R G N R
6
 
7
- Maximum length: 50 amino acids
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - precision
8
+ - recall
9
+ model-index:
10
+ - name: protBERTbfd_AAV2_classification
11
+ results: []
12
+ ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # protBERTbfd_AAV2_classification
18
 
19
+ This model is a fine-tuned version of [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1341
22
+ - Accuracy: 0.9615
23
+ - F1: 0.9627
24
+ - Precision: 0.9637
25
+ - Recall: 0.9618
26
+ - Auroc: 0.9615
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 64
50
+ - total_train_batch_size: 2048
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 200
54
+ - num_epochs: 8
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auroc |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
61
+ | No log | 1.0 | 116 | 0.2582 | 0.9064 | 0.9157 | 0.8564 | 0.9839 | 0.9038 |
62
+ | No log | 2.0 | 232 | 0.1447 | 0.9424 | 0.9432 | 0.9618 | 0.9252 | 0.9430 |
63
+ | No log | 3.0 | 348 | 0.1182 | 0.9542 | 0.9556 | 0.9573 | 0.9539 | 0.9542 |
64
+ | No log | 4.0 | 464 | 0.1129 | 0.9585 | 0.9602 | 0.9520 | 0.9685 | 0.9581 |
65
+ | 0.2162 | 5.0 | 580 | 0.1278 | 0.9553 | 0.9558 | 0.9776 | 0.9351 | 0.9561 |
66
+ | 0.2162 | 6.0 | 696 | 0.1139 | 0.9587 | 0.9607 | 0.9465 | 0.9752 | 0.9581 |
67
+ | 0.2162 | 7.0 | 812 | 0.1127 | 0.9620 | 0.9633 | 0.9614 | 0.9652 | 0.9619 |
68
+ | 0.2162 | 8.0 | 928 | 0.1341 | 0.9615 | 0.9627 | 0.9637 | 0.9618 | 0.9615 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.18.0
74
+ - Pytorch 1.11.0+cu113
75
+ - Datasets 2.1.0
76
+ - Tokenizers 0.12.1