See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/zephyr-sft
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0c7e0347dc528ec9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0c7e0347dc528ec9_train_data.json
type:
field_input: gpt-4-turbo
field_instruction: prompt
field_output: GEITje-7B-ultra
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
ddp_timeout: 1800
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
group_by_length: true
hub_model_id: auxyus/e94cc1a5-6755-485e-a1fa-2ab934074713
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 1800
micro_batch_size: 4
mlflow_experiment_name: /tmp/0c7e0347dc528ec9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
relora_prune_ratio: 0.9
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: acopia-grant
wandb_mode: online
wandb_name: 253b4ca6-cd3a-4f4f-813e-a3089ea28dd9
wandb_project: Gradients-On-191
wandb_run: your_name
wandb_runid: 253b4ca6-cd3a-4f4f-813e-a3089ea28dd9
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
e94cc1a5-6755-485e-a1fa-2ab934074713
This model is a fine-tuned version of unsloth/zephyr-sft on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3019
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 1800
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 1.6349 |
4.9406 | 0.0500 | 150 | 1.4026 |
4.8063 | 0.1000 | 300 | 1.3712 |
4.7525 | 0.1500 | 450 | 1.3536 |
4.7024 | 0.2000 | 600 | 1.3401 |
4.7439 | 0.2500 | 750 | 1.3333 |
4.486 | 0.3000 | 900 | 1.3268 |
4.5745 | 0.3500 | 1050 | 1.3201 |
4.3764 | 0.4000 | 1200 | 1.3149 |
4.4873 | 0.4500 | 1350 | 1.3118 |
4.2234 | 0.5000 | 1500 | 1.3083 |
4.5544 | 0.5500 | 1650 | 1.3062 |
4.4721 | 0.6001 | 1800 | 1.3019 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for auxyus/e94cc1a5-6755-485e-a1fa-2ab934074713
Base model
unsloth/zephyr-sft