lewtun's picture
lewtun HF staff
Add evaluation results on the sst2 config and validation split of glue (#124)
82125a5
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: autoevaluate-binary-classification
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          args: sst2
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTZmNGE1N2FjODM3OGJiM2Q2NTY5MzZjNGFhNGVjYzcwOTlkMzVhYjdmOTgwY2Y1NzMyZjY0NzAxMzZkMjM4NyIsInZlcnNpb24iOjF9.LabPe-QWLUUJdPyQ0Ki9rHq74opfAO1fxvu2FjUFiY9zhxAe0RKNjZRHPbrF10249Z3kDZSAq2yzQ1TjKvoLBQ
          - type: precision
            value: 0.8898678414096917
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTczZjUwY2MzNTMzY2VlMjFmZGI2MzAwNTEwM2IzYWVkYmFiNjk0MDM3YmYzYjFmNGM3NWI5NDIzODJjMTA1ZCIsInZlcnNpb24iOjF9.3RC343Rtep7yxGH82c1WV2IAVqhJTRoOwiwFVp_w0K0JK_dTqnfEylLb1yMt367ztvkhhOgRn4i9GsL4ZNC5BQ
          - type: recall
            value: 0.9099099099099099
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmM4M2Y3YTVjOTlhZjc2OGUxMzFhNGI3YzM4MDI0NDMwMmQyMmRmY2MyMTI5ZTdmYWVjMTlmYWE0N2Q0ZjJiNyIsInZlcnNpb24iOjF9.lMKosw258_E40HdqY8BFyWVJYAMx4cpVyYusGEqN429_cv3DzeIMaOr00trGsJX3BIqr-j5ScjLVV79f5nK2CA
          - type: auc
            value: 0.9672186789593331
            name: AUC
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzY1YmM4YjJhNTY2ZmIyYmI5ZTBjZjc3MDZiMzQ3ZTEyZWQ1M2I4ZTk4OGYwNzZiY2VlODRkODRjNTg2MDNmMSIsInZlcnNpb24iOjF9.tO3GQ5Rgl26zHz18-yR2wtcajmb_MEPNCZiA1Exz4255-m1iDFyMPM2Pw4s75xUSXWzsF--bo6eqmCLo4yjkBw
          - type: f1
            value: 0.8997772828507795
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmM0ZjhjZWY2ZGZiYWZhOTY2OWUwNzcxMTRlNjU4MDMyMWViMjg2YzE0YzBiMzVlYTU2ODkyZWY0MzcxOWJlOCIsInZlcnNpb24iOjF9.sySuyn4j72Gt3wstru118StL7pzGgZKzAPtE0FM7HVfdBrVXwZckKaUmoQR-nKaVynbo1h4mykNdM-_MwmLlCA
          - type: loss
            value: 0.30092036724090576
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDQ2ZjJiMjVhNTMxZGIxMTFlMjVhYTQyOGI2YjgyOTI3OTQ4NGU0ZWYxMDY2MmI1OGNiNDcwNTU3MmEzM2YzZSIsInZlcnNpb24iOjF9.MGCrOvwyOdMQ91z2pzgsIxS-PMCZy2YwNX7IuMNAVokRhTSGUYtFt-8px1Dv9w39IT6ZbySZ7kQQKz6kK8HWAQ
          - type: matthews_correlation
            value: 0.793630584795814
            name: matthews_correlation
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY5ODMyZjc4MTk0NWU1YTRmNGI5NDU0ZGRlMDEwY2ZhN2YzMjAxNDE2MTY4ZTI2OWZjMzkwMzc5NTY3NTlkMSIsInZlcnNpb24iOjF9.1WB_1AIkuk68pphfqpqB_T1VpM3wJPe7mNGOvaDANcek7TKUFuT6kA8J1h1SICS_80mdXDI4yJGGZy3CZwpXDQ

binary-classification

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3009
  • Accuracy: 0.8968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.175 1.0 4210 0.3009 0.8968

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1