metadata
			license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: autoevaluate-binary-classification
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          args: sst2
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
            verified: true
            verifyToken: '1234'
          - type: precision
            value: 0.8898678414096917
            name: Precision
            verified: true
            verifyToken: '1234'
          - type: recall
            value: 0.9099099099099099
            name: Recall
            verified: true
            verifyToken: '1234'
          - type: auc
            value: 0.967247621453229
            name: AUC
            verified: true
            verifyToken: '1234'
          - type: f1
            value: 0.8997772828507795
            name: F1
            verified: true
            verifyToken: '1234'
          - type: loss
            value: 0.30091655254364014
            name: loss
            verified: true
            verifyToken: '1234'
          - type: matthews_correlation
            value: 0.793630584795814
            name: matthews_correlation
            verified: true
            verifyToken: '1234'
binary-classification
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3009
 - Accuracy: 0.8968
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 16
 - eval_batch_size: 16
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - num_epochs: 1
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 0.175 | 1.0 | 4210 | 0.3009 | 0.8968 | 
Framework versions
- Transformers 4.19.2
 - Pytorch 1.11.0+cu113
 - Datasets 2.2.2
 - Tokenizers 0.12.1