|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- attn-signs/kolmogorov-3 |
|
- attn-signs/russian-code |
|
language: |
|
- ru |
|
base_model: |
|
- Qwen/Qwen3-8B |
|
--- |
|
|
|
# Qwen3-8B-ru |
|
|
|
- [EN] |
|
Qwen3-based model, adapted for russian text generation tasks. |
|
- [RU] |
|
Finetune версия Qwen3, адаптированная для генерации русского текста. |
|
|
|
## Model Details / Детализация модели |
|
- [EN] |
|
LoRA supervised finetuning was performed on 2xA100 NVIDIA GPUs for 12h for 1 epoch on datasets: |
|
attn-signs/kolmogorov-3; |
|
attn-signs/russian-code; |
|
|
|
- [RU] |
|
LoRA SFT цикл был выполнен на двух NVIDIA A100, обучение длилось около 12 часов. |
|
Прогон полной эпохи датасетов: |
|
attn-signs/kolmogorov-3; |
|
attn-signs/russian-code; |
|
|
|
|
|
### Model Description / Описание модели |
|
|
|
- **Developed by:** [Reisen Raumberg (Attention Signs team)] |
|
- **Language(s) (NLP):** [RU/EN] |
|
- **Finetuned from model:** [Qwen3] |
|
|
|
Utilized DeepSpeed (Stage 3), HF.Accelerator for distributed training and fused AdamW. |
|
**GPU hours**: 12h of NVIDIA A100 |
|
|
|
Для обучения использовались HuggingFace Accelerator с Microsoft DeepSpeed (Stage 3) для распределения параметров и стейта оптимизатора, а так же зафьюженный AdamW |
|
**GPU часы**: 12 часов NVIDIA A100 |
|
|
|
### Model Config / Конфигурация обучения |
|
```toml |
|
[model] |
|
model_name_or_path = "Qwen/Qwen3-8B" |
|
|
|
[datasets] |
|
dataset = [ |
|
'attn-signs/kolmogorov-3', |
|
'attn-signs/russian-code', |
|
] |
|
dataset_ratio = [ |
|
1, |
|
1 |
|
] |
|
test_size = 0.05 |
|
conversation_field = "conversation" |
|
generate_eval_examples = false |
|
evaluation_strategy = "steps" |
|
eval_steps = 500 |
|
dataloader_num_workers = 2 |
|
remove_unused_columns = true |
|
|
|
[run] |
|
save_strategy = "steps" |
|
save_steps = 500 |
|
save_total_limit = 3 |
|
run_name = "sft-qwen3-8b" |
|
report_to = "wandb" |
|
logging_first_step = true |
|
logging_steps = 1 |
|
output_dir = "models/attn-signs-qwen3-8b" |
|
project_name = "sft-qwen3" |
|
|
|
[training] |
|
train_only_on_completions = true |
|
per_device_train_batch_size = 1 |
|
per_device_eval_batch_size = 1 |
|
num_train_epochs = 1 |
|
learning_rate = 0.00004 |
|
gradient_accumulation_steps = 8 |
|
gradient_checkpointing = true |
|
warmup_steps = 10 |
|
bf16 = true |
|
seed = 42 |
|
use_peft = true |
|
max_length = 4096 |
|
|
|
[fusion] |
|
use_liger = true |
|
attn_implementation = "flash_attention_2" |
|
|
|
[lora] |
|
lora_target_modules = [ |
|
"k_proj", |
|
"v_proj", |
|
"q_proj", |
|
"o_proj", |
|
"gate_proj", |
|
"up_proj", |
|
"down_proj", |
|
] |
|
lora_r = 512 |
|
lora_alpha = 512 |
|
|
|
[tokenizer] |
|
assistant_message_template = "<|im_start|>assistant" |
|
pad_token = "<|endoftext|>" |
|
eos_token = "<|im_end|>" |
|
chat_template = "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}" |
|
``` |
|
|
|
### Usage / Использование модели |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "attn-signs/Qwen3-8B-ru" |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
# prepare the model input |
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32768 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
# parsing thinking content |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
|
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") |
|
|
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
``` |