metadata
library_name: transformers
language:
- lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- yogera
metrics:
- wer
model-index:
- name: wav2vec2-bert
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Yogera
type: yogera
metrics:
- name: Wer
type: wer
value: 0.14867316851893853
wav2vec2-bert
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Yogera dataset. It achieves the following results on the evaluation set:
- Loss: 0.2216
- Wer: 0.1487
- Cer: 0.0334
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.6681 | 1.0 | 235 | 0.2226 | 0.2616 | 0.0533 |
0.1666 | 2.0 | 470 | 0.1639 | 0.2013 | 0.0410 |
0.1249 | 3.0 | 705 | 0.1608 | 0.1912 | 0.0416 |
0.101 | 4.0 | 940 | 0.1573 | 0.1835 | 0.0416 |
0.0833 | 5.0 | 1175 | 0.1567 | 0.1697 | 0.0378 |
0.0715 | 6.0 | 1410 | 0.1589 | 0.1564 | 0.0346 |
0.0624 | 7.0 | 1645 | 0.1634 | 0.1728 | 0.0408 |
0.0541 | 8.0 | 1880 | 0.1592 | 0.1559 | 0.0341 |
0.0464 | 9.0 | 2115 | 0.1788 | 0.1546 | 0.0336 |
0.0434 | 10.0 | 2350 | 0.1641 | 0.1575 | 0.0353 |
0.0385 | 11.0 | 2585 | 0.1854 | 0.1498 | 0.0333 |
0.0358 | 12.0 | 2820 | 0.1915 | 0.1504 | 0.0345 |
0.0308 | 13.0 | 3055 | 0.1747 | 0.1514 | 0.0328 |
0.0283 | 14.0 | 3290 | 0.1966 | 0.1449 | 0.0329 |
0.0274 | 15.0 | 3525 | 0.1882 | 0.1535 | 0.0342 |
0.0246 | 16.0 | 3760 | 0.2199 | 0.1588 | 0.0362 |
0.0212 | 17.0 | 3995 | 0.2108 | 0.1572 | 0.0355 |
0.0188 | 18.0 | 4230 | 0.2173 | 0.1453 | 0.0320 |
0.017 | 19.0 | 4465 | 0.2358 | 0.1444 | 0.0324 |
0.0177 | 20.0 | 4700 | 0.2280 | 0.1548 | 0.0339 |
0.0174 | 21.0 | 4935 | 0.2142 | 0.1484 | 0.0322 |
0.0138 | 22.0 | 5170 | 0.2315 | 0.1489 | 0.0338 |
0.0122 | 23.0 | 5405 | 0.2116 | 0.1483 | 0.0341 |
0.0125 | 24.0 | 5640 | 0.2216 | 0.1487 | 0.0334 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1