sulaimank's picture
End of training
8ae0369 verified
metadata
library_name: transformers
language:
  - lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - yogera
metrics:
  - wer
model-index:
  - name: wav2vec2-bert
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Yogera
          type: yogera
        metrics:
          - name: Wer
            type: wer
            value: 0.14867316851893853

wav2vec2-bert

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Yogera dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2216
  • Wer: 0.1487
  • Cer: 0.0334

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.6681 1.0 235 0.2226 0.2616 0.0533
0.1666 2.0 470 0.1639 0.2013 0.0410
0.1249 3.0 705 0.1608 0.1912 0.0416
0.101 4.0 940 0.1573 0.1835 0.0416
0.0833 5.0 1175 0.1567 0.1697 0.0378
0.0715 6.0 1410 0.1589 0.1564 0.0346
0.0624 7.0 1645 0.1634 0.1728 0.0408
0.0541 8.0 1880 0.1592 0.1559 0.0341
0.0464 9.0 2115 0.1788 0.1546 0.0336
0.0434 10.0 2350 0.1641 0.1575 0.0353
0.0385 11.0 2585 0.1854 0.1498 0.0333
0.0358 12.0 2820 0.1915 0.1504 0.0345
0.0308 13.0 3055 0.1747 0.1514 0.0328
0.0283 14.0 3290 0.1966 0.1449 0.0329
0.0274 15.0 3525 0.1882 0.1535 0.0342
0.0246 16.0 3760 0.2199 0.1588 0.0362
0.0212 17.0 3995 0.2108 0.1572 0.0355
0.0188 18.0 4230 0.2173 0.1453 0.0320
0.017 19.0 4465 0.2358 0.1444 0.0324
0.0177 20.0 4700 0.2280 0.1548 0.0339
0.0174 21.0 4935 0.2142 0.1484 0.0322
0.0138 22.0 5170 0.2315 0.1489 0.0338
0.0122 23.0 5405 0.2116 0.1483 0.0341
0.0125 24.0 5640 0.2216 0.1487 0.0334

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1