Beijuka's picture
End of training
164c9db verified
metadata
library_name: transformers
language:
  - bem
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - BIG_C/Bemba
metrics:
  - wer
model-index:
  - name: facebook/mms-1b-all
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BIG_C
          type: BIG_C/Bemba
        metrics:
          - name: Wer
            type: wer
            value: 0.42816708122480485

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3664
  • Model Preparation Time: 0.0118
  • Wer: 0.4282
  • Cer: 0.0810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
1.1174 1.0 1544 0.6021 0.0118 0.5160 0.1324
0.6138 2.0 3088 0.5427 0.0118 0.4778 0.1229
0.5739 3.0 4632 0.5287 0.0118 0.4618 0.1194
0.5536 4.0 6176 0.5322 0.0118 0.4502 0.1169
0.5399 5.0 7720 0.5151 0.0118 0.4503 0.1168
0.5291 6.0 9264 0.5201 0.0118 0.4560 0.1224
0.52 7.0 10808 0.5058 0.0118 0.4622 0.1198
0.5133 8.0 12352 0.5017 0.0118 0.4466 0.1175
0.5054 9.0 13896 0.4975 0.0118 0.4438 0.1134
0.4994 10.0 15440 0.4987 0.0118 0.4373 0.1138
0.4933 11.0 16984 0.4932 0.0118 0.4211 0.1098
0.4868 12.0 18528 0.4977 0.0118 0.4460 0.1193
0.4827 13.0 20072 0.4907 0.0118 0.4229 0.1110
0.4767 14.0 21616 0.4876 0.0118 0.4169 0.1088
0.4712 15.0 23160 0.4875 0.0118 0.4306 0.1149
0.4714 16.0 24704 0.4862 0.0118 0.4191 0.1084
0.4631 17.0 26248 0.4873 0.0118 0.4171 0.1114
0.4578 18.0 27792 0.4848 0.0118 0.4153 0.1114
0.4535 19.0 29336 0.4789 0.0118 0.4105 0.1094
0.4491 20.0 30880 0.4874 0.0118 0.4301 0.1145
0.4453 21.0 32424 0.4847 0.0118 0.4174 0.1092
0.4395 22.0 33968 0.4861 0.0118 0.4080 0.1061
0.4345 23.0 35512 0.4903 0.0118 0.4021 0.1055
0.4307 24.0 37056 0.4919 0.0118 0.4115 0.1097
0.4261 25.0 38600 0.4820 0.0118 0.4036 0.1082
0.4218 26.0 40144 0.4921 0.0118 0.4101 0.1107
0.4198 27.0 41688 0.4892 0.0118 0.4068 0.1097
0.4149 28.0 43232 0.4898 0.0118 0.4070 0.1090
0.4097 29.0 44776 0.4870 0.0118 0.3914 0.1039
0.4061 30.0 46320 0.4886 0.0118 0.4029 0.1105
0.4027 31.0 47864 0.4872 0.0118 0.4058 0.1071
0.4002 32.0 49408 0.5048 0.0118 0.4004 0.1045
0.3957 33.0 50952 0.4955 0.0118 0.3950 0.1040
0.3935 34.0 52496 0.4999 0.0118 0.4083 0.1127
0.3906 35.0 54040 0.4966 0.0118 0.4075 0.1082
0.3867 36.0 55584 0.4977 0.0118 0.4169 0.1173
0.3837 37.0 57128 0.4920 0.0118 0.3964 0.1042
0.3795 38.0 58672 0.4911 0.0118 0.3938 0.1060
0.3769 39.0 60216 0.5098 0.0118 0.3870 0.1023
0.3745 40.0 61760 0.5026 0.0118 0.3926 0.1053
0.3719 41.0 63304 0.4950 0.0118 0.3979 0.1064
0.3685 42.0 64848 0.5065 0.0118 0.3902 0.1036
0.3654 43.0 66392 0.4997 0.0118 0.3933 0.1075
0.3624 44.0 67936 0.5080 0.0118 0.3856 0.1021
0.3612 45.0 69480 0.4999 0.0118 0.3920 0.1057
0.3583 46.0 71024 0.5161 0.0118 0.3823 0.1019
0.3548 47.0 72568 0.5025 0.0118 0.3877 0.1036
0.3528 48.0 74112 0.5079 0.0118 0.3928 0.1052
0.3489 49.0 75656 0.5063 0.0118 0.3956 0.1048
0.3475 50.0 77200 0.5052 0.0118 0.3862 0.1032
0.3454 51.0 78744 0.5066 0.0118 0.3847 0.1024
0.3441 52.0 80288 0.5166 0.0118 0.3848 0.1028
0.3412 53.0 81832 0.5055 0.0118 0.3895 0.1041
0.3399 54.0 83376 0.5160 0.0118 0.3871 0.1030
0.3365 55.0 84920 0.5082 0.0118 0.3881 0.1042
0.3345 56.0 86464 0.5137 0.0118 0.3873 0.1044

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1