|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: bambara-mms-5-hours-mixed-asr-hf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/oopohzvw) |
|
# bambara-mms-5-hours-mixed-asr-hf |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2515 |
|
- Wer: 0.5422 |
|
- Cer: 0.2520 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| |
|
| 1.9023 | 1.6750 | 500 | 1.3385 | 0.8473 | 0.3992 | |
|
| 1.404 | 3.3501 | 1000 | 1.3485 | 0.7641 | 0.3617 | |
|
| 1.2515 | 5.0251 | 1500 | 1.2069 | 0.7155 | 0.3408 | |
|
| 1.1487 | 6.7002 | 2000 | 1.1615 | 0.7022 | 0.3248 | |
|
| 1.0495 | 8.3752 | 2500 | 1.1723 | 0.6488 | 0.3015 | |
|
| 0.9528 | 10.0503 | 3000 | 1.2085 | 0.6272 | 0.2902 | |
|
| 0.8446 | 11.7253 | 3500 | 1.1891 | 0.6240 | 0.2888 | |
|
| 0.7752 | 13.4003 | 4000 | 1.3426 | 0.6039 | 0.2792 | |
|
| 0.7026 | 15.0754 | 4500 | 1.3062 | 0.5994 | 0.2773 | |
|
| 0.6321 | 16.7504 | 5000 | 1.3431 | 0.5861 | 0.2724 | |
|
| 0.5651 | 18.4255 | 5500 | 1.3799 | 0.5908 | 0.2733 | |
|
| 0.5106 | 20.1005 | 6000 | 1.4988 | 0.5843 | 0.2722 | |
|
| 0.4645 | 21.7755 | 6500 | 1.5005 | 0.5898 | 0.2738 | |
|
| 0.4139 | 23.4506 | 7000 | 1.5369 | 0.5781 | 0.2705 | |
|
| 0.378 | 25.1256 | 7500 | 1.6367 | 0.5721 | 0.2670 | |
|
| 0.3389 | 26.8007 | 8000 | 1.7074 | 0.5730 | 0.2702 | |
|
| 0.3067 | 28.4757 | 8500 | 1.7832 | 0.5681 | 0.2652 | |
|
| 0.2842 | 30.1508 | 9000 | 1.8441 | 0.5589 | 0.2612 | |
|
| 0.2576 | 31.8258 | 9500 | 1.7606 | 0.5623 | 0.2637 | |
|
| 0.2333 | 33.5008 | 10000 | 1.8455 | 0.5606 | 0.2627 | |
|
| 0.2192 | 35.1759 | 10500 | 1.9153 | 0.5562 | 0.2611 | |
|
| 0.1992 | 36.8509 | 11000 | 1.8999 | 0.5562 | 0.2590 | |
|
| 0.1802 | 38.5260 | 11500 | 2.0523 | 0.5571 | 0.2607 | |
|
| 0.165 | 40.2010 | 12000 | 2.0747 | 0.5509 | 0.2573 | |
|
| 0.1571 | 41.8760 | 12500 | 2.0351 | 0.5508 | 0.2549 | |
|
| 0.1409 | 43.5511 | 13000 | 2.2121 | 0.5483 | 0.2554 | |
|
| 0.131 | 45.2261 | 13500 | 2.1694 | 0.5458 | 0.2544 | |
|
| 0.1223 | 46.9012 | 14000 | 2.2376 | 0.5455 | 0.2531 | |
|
| 0.1177 | 48.5762 | 14500 | 2.2515 | 0.5422 | 0.2520 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|