asadfgglie's picture
Update README.md
b06b14f verified
|
raw
history blame
5.54 kB
metadata
base_model: asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1-seed20241201
    results: []
datasets:
  - asadfgglie/nli-zh-tw-all
  - asadfgglie/BanBan_2024-10-17-facial_expressions-nli
language:
  - zh
pipeline_tag: zero-shot-classification

mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1-seed20241201

This model use same hyper-parameter with asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1, except RANDOM_SEED.

Original version use RANDOM_SEED=42, this version use RANDOM_SEED=20241201.

This model is a fine-tuned version of asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6134
  • F1 Macro: 0.8616
  • F1 Micro: 0.8634
  • Accuracy Balanced: 0.8616
  • Accuracy: 0.8634
  • Precision Macro: 0.8616
  • Recall Macro: 0.8616
  • Precision Micro: 0.8634
  • Recall Micro: 0.8634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 20241201
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.2034 0.17 200 0.4241 0.8481 0.8518 0.8451 0.8518 0.8541 0.8451 0.8518 0.8518
0.219 0.34 400 0.4178 0.8608 0.8624 0.8615 0.8624 0.8602 0.8615 0.8624 0.8624
0.2142 0.51 600 0.3810 0.8572 0.8602 0.8548 0.8602 0.8613 0.8548 0.8602 0.8602
0.199 0.68 800 0.4314 0.8537 0.8571 0.8508 0.8571 0.8590 0.8508 0.8571 0.8571
0.2005 0.85 1000 0.4282 0.8572 0.8602 0.8547 0.8602 0.8615 0.8547 0.8602 0.8602
0.1846 1.02 1200 0.4631 0.8691 0.8703 0.8707 0.8703 0.8681 0.8707 0.8703 0.8703
0.154 1.19 1400 0.4922 0.8599 0.8613 0.8610 0.8613 0.8590 0.8610 0.8613 0.8613
0.1432 1.35 1600 0.5020 0.8540 0.8560 0.8540 0.8560 0.8541 0.8540 0.8560 0.8560
0.1335 1.52 1800 0.5313 0.8479 0.8507 0.8461 0.8507 0.8505 0.8461 0.8507 0.8507
0.1373 1.69 2000 0.5018 0.8546 0.8571 0.8533 0.8571 0.8563 0.8533 0.8571 0.8571
0.128 1.86 2200 0.4896 0.8644 0.8655 0.8665 0.8655 0.8633 0.8665 0.8655 0.8655
0.1257 2.03 2400 0.4922 0.8648 0.8666 0.8648 0.8666 0.8648 0.8648 0.8666 0.8666
0.0959 2.2 2600 0.5814 0.8589 0.8613 0.8576 0.8613 0.8606 0.8576 0.8613 0.8613
0.0918 2.37 2800 0.5987 0.8617 0.8634 0.8618 0.8634 0.8615 0.8618 0.8634 0.8634
0.0992 2.54 3000 0.6117 0.8631 0.8650 0.8629 0.8650 0.8634 0.8629 0.8650 0.8650
0.0897 2.71 3200 0.6191 0.8583 0.8602 0.8583 0.8602 0.8584 0.8583 0.8602 0.8602
0.1065 2.88 3400 0.6221 0.8625 0.8645 0.8619 0.8645 0.8631 0.8619 0.8645 0.8645

Eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli eval_dataset
Accuracy 0.871 0.952 0.863
Inference text/sec (RTX4060ti, batch=128) 38.0 278.0 37.0

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3