metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:90000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model: Luyu/co-condenser-marco
widget:
- text: where was pandora vanderpump born
- text: how old is jay sekulow
- text: >-
Quick Answer. According to Domino Sugar, 1 pound of granulated sugar
contains approximately 2 1/4 cups of sugar. Therefore, in a 4-pound
package, the cook gets an average of 9 cups of sugar for baking. Continue
Reading.
- text: why did rachel hunter and rod stewart divorce
- text: "Lake Poinsett. Home > Florida Lakes > Lake Poinsett. Lake Poinsett BASS ONLINE 2016-10-18T14:26:01+00:00. Lake Poinsett Fishing. As the St. Johns River snakes out of Lake Washington and through the lush, green marshes, it eventually forms a â\x80\x98minorâ\x80\x99 wide spot in its trace some eight miles to the North."
datasets:
- sentence-transformers/msmarco
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: >-
splade-co-condenser-marco trained on MS MARCO hard negatives with
distillation
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.38
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.74
name: Dot Recall@5
- type: dot_recall@10
value: 0.82
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6023892381130012
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5322460317460317
name: Dot Mrr@10
- type: dot_map@100
value: 0.5403716431832851
name: Dot Map@100
- type: query_active_dims
value: 47.2599983215332
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9984516087307014
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 140.00595092773438
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9954129496452482
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.68
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.76
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.22666666666666668
name: Dot Precision@3
- type: dot_precision@5
value: 0.15200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.38
name: Dot Recall@1
- type: dot_recall@3
value: 0.68
name: Dot Recall@3
- type: dot_recall@5
value: 0.76
name: Dot Recall@5
- type: dot_recall@10
value: 0.82
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6107820870126021
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5426666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.5509587519225252
name: Dot Map@100
- type: query_active_dims
value: 47.400001525878906
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9984470217703336
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 140.1564483642578
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9954080188596993
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.32666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.32400000000000007
name: Dot Precision@5
- type: dot_precision@10
value: 0.264
name: Dot Precision@10
- type: dot_recall@1
value: 0.023844509223146355
name: Dot Recall@1
- type: dot_recall@3
value: 0.07793005806894508
name: Dot Recall@3
- type: dot_recall@5
value: 0.09810315520586681
name: Dot Recall@5
- type: dot_recall@10
value: 0.12354566164984142
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3101256773824815
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.46361111111111114
name: Dot Mrr@10
- type: dot_map@100
value: 0.13411049507814402
name: Dot Map@100
- type: query_active_dims
value: 46.79999923706055
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9984666797969641
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 213.68675231933594
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9929989269274839
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.31999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.32799999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.264
name: Dot Precision@10
- type: dot_recall@1
value: 0.024013480037278462
name: Dot Recall@1
- type: dot_recall@3
value: 0.07918359732248433
name: Dot Recall@3
- type: dot_recall@5
value: 0.09829476070182012
name: Dot Recall@5
- type: dot_recall@10
value: 0.12458300696889957
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.31048812326644165
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4638571428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.13575571099602127
name: Dot Map@100
- type: query_active_dims
value: 46.63999938964844
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9984719219124025
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 215.3623504638672
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9929440288819912
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.5
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.72
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.78
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.5
name: Dot Precision@1
- type: dot_precision@3
value: 0.24666666666666665
name: Dot Precision@3
- type: dot_precision@5
value: 0.16
name: Dot Precision@5
- type: dot_precision@10
value: 0.088
name: Dot Precision@10
- type: dot_recall@1
value: 0.46
name: Dot Recall@1
- type: dot_recall@3
value: 0.67
name: Dot Recall@3
- type: dot_recall@5
value: 0.73
name: Dot Recall@5
- type: dot_recall@10
value: 0.79
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6404985476355836
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6148888888888888
name: Dot Mrr@10
- type: dot_map@100
value: 0.5893974971543039
name: Dot Map@100
- type: query_active_dims
value: 54.7599983215332
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9982058843351834
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 159.0401153564453
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9947893285054568
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.5
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.74
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.78
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.5
name: Dot Precision@1
- type: dot_precision@3
value: 0.2533333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.16
name: Dot Precision@5
- type: dot_precision@10
value: 0.088
name: Dot Precision@10
- type: dot_recall@1
value: 0.46
name: Dot Recall@1
- type: dot_recall@3
value: 0.69
name: Dot Recall@3
- type: dot_recall@5
value: 0.73
name: Dot Recall@5
- type: dot_recall@10
value: 0.79
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6425696161474067
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6180555555555555
name: Dot Mrr@10
- type: dot_map@100
value: 0.5913323140802889
name: Dot Map@100
- type: query_active_dims
value: 55.279998779296875
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.998188847428763
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 160.6440887451172
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9947367771199425
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.41333333333333333
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6266666666666667
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7133333333333333
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7866666666666666
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.41333333333333333
name: Dot Precision@1
- type: dot_precision@3
value: 0.2644444444444444
name: Dot Precision@3
- type: dot_precision@5
value: 0.2106666666666667
name: Dot Precision@5
- type: dot_precision@10
value: 0.14466666666666664
name: Dot Precision@10
- type: dot_recall@1
value: 0.2879481697410488
name: Dot Recall@1
- type: dot_recall@3
value: 0.46931001935631506
name: Dot Recall@3
- type: dot_recall@5
value: 0.5227010517352889
name: Dot Recall@5
- type: dot_recall@10
value: 0.5778485538832805
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.517671154377022
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5369153439153439
name: Dot Mrr@10
- type: dot_map@100
value: 0.42129321180524437
name: Dot Map@100
- type: query_active_dims
value: 49.60666529337565
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9983747242876162
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 164.05755283149915
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.994624940933376
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.5333751962323391
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7058712715855572
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7721821036106752
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8522762951334379
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.5333751962323391
name: Dot Precision@1
- type: dot_precision@3
value: 0.33272632129774987
name: Dot Precision@3
- type: dot_precision@5
value: 0.26023861852433283
name: Dot Precision@5
- type: dot_precision@10
value: 0.18210989010989007
name: Dot Precision@10
- type: dot_recall@1
value: 0.3065495560101058
name: Dot Recall@1
- type: dot_recall@3
value: 0.47065760019746655
name: Dot Recall@3
- type: dot_recall@5
value: 0.5319234205921822
name: Dot Recall@5
- type: dot_recall@10
value: 0.6150942444263999
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5745069781714651
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6371311579576886
name: Dot Mrr@10
- type: dot_map@100
value: 0.49203911035247966
name: Dot Map@100
- type: query_active_dims
value: 74.83821266421184
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.997548056724192
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 164.48360193811445
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9946109821788182
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.1733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.098
name: Dot Precision@10
- type: dot_recall@1
value: 0.15899999999999997
name: Dot Recall@1
- type: dot_recall@3
value: 0.23566666666666664
name: Dot Recall@3
- type: dot_recall@5
value: 0.2956666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.3846666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3249781769970352
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4319047619047619
name: Dot Mrr@10
- type: dot_map@100
value: 0.2561474960874848
name: Dot Map@100
- type: query_active_dims
value: 110.87999725341797
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.996367210626649
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 192.7664337158203
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9936843446132029
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.78
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.86
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.96
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.78
name: Dot Precision@1
- type: dot_precision@3
value: 0.6799999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.6080000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.516
name: Dot Precision@10
- type: dot_recall@1
value: 0.0805494021375943
name: Dot Recall@1
- type: dot_recall@3
value: 0.16994266800080168
name: Dot Recall@3
- type: dot_recall@5
value: 0.23707620669389493
name: Dot Recall@5
- type: dot_recall@10
value: 0.33886339859207476
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6340309872443929
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8339682539682539
name: Dot Mrr@10
- type: dot_map@100
value: 0.4790982179197883
name: Dot Map@100
- type: query_active_dims
value: 48.70000076293945
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9984044295667734
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 181.08651733398438
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9940670166655532
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.76
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.92
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.96
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.76
name: Dot Precision@1
- type: dot_precision@3
value: 0.30666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.19199999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.10399999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7166666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.8533333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.8833333333333333
name: Dot Recall@5
- type: dot_recall@10
value: 0.9433333333333332
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8471518983952602
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.836857142857143
name: Dot Mrr@10
- type: dot_map@100
value: 0.8095613973839781
name: Dot Map@100
- type: query_active_dims
value: 76.31999969482422
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9974995085612075
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 218.5546417236328
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9928394390366412
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.4
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.16799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.10599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.22607936507936507
name: Dot Recall@1
- type: dot_recall@3
value: 0.29846825396825394
name: Dot Recall@3
- type: dot_recall@5
value: 0.4133253968253968
name: Dot Recall@5
- type: dot_recall@10
value: 0.5269920634920634
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.41629394858564644
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.48766666666666664
name: Dot Mrr@10
- type: dot_map@100
value: 0.35228818600065076
name: Dot Map@100
- type: query_active_dims
value: 52.36000061035156
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9982845160667599
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 134.6856231689453
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9955872608882462
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.84
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.94
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.84
name: Dot Precision@1
- type: dot_precision@3
value: 0.4733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.31999999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.17199999999999996
name: Dot Precision@10
- type: dot_recall@1
value: 0.42
name: Dot Recall@1
- type: dot_recall@3
value: 0.71
name: Dot Recall@3
- type: dot_recall@5
value: 0.8
name: Dot Recall@5
- type: dot_recall@10
value: 0.86
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7969477208305935
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.895
name: Dot Mrr@10
- type: dot_map@100
value: 0.7206139921516787
name: Dot Map@100
- type: query_active_dims
value: 81.45999908447266
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.997331105462143
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 189.1210174560547
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9938037803074485
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.82
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 1
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.82
name: Dot Precision@1
- type: dot_precision@3
value: 0.38666666666666655
name: Dot Precision@3
- type: dot_precision@5
value: 0.25199999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.13399999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7440000000000001
name: Dot Recall@1
- type: dot_recall@3
value: 0.938
name: Dot Recall@3
- type: dot_recall@5
value: 0.9686666666666668
name: Dot Recall@5
- type: dot_recall@10
value: 0.99
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9198144942648507
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9033333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.8868987080103358
name: Dot Map@100
- type: query_active_dims
value: 50.97999954223633
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9983297293905302
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 54.81371307373047
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9982041244651816
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.66
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.2733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.228
name: Dot Precision@5
- type: dot_precision@10
value: 0.16399999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.08766666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.16966666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.2346666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.3356666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.32595965166383967
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5274920634920635
name: Dot Mrr@10
- type: dot_map@100
value: 0.24854805230092453
name: Dot Map@100
- type: query_active_dims
value: 77.0999984741211
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9974739532640678
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 191.10289001464844
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9937388477159214
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.14
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.46
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.14
name: Dot Precision@1
- type: dot_precision@3
value: 0.15333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.11600000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.07400000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.14
name: Dot Recall@1
- type: dot_recall@3
value: 0.46
name: Dot Recall@3
- type: dot_recall@5
value: 0.58
name: Dot Recall@5
- type: dot_recall@10
value: 0.74
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.431363004003593
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.33355555555555555
name: Dot Mrr@10
- type: dot_map@100
value: 0.345556865044935
name: Dot Map@100
- type: query_active_dims
value: 184.3800048828125
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.993959111300609
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 172.4982147216797
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9943483973946111
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.52
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.72
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.52
name: Dot Precision@1
- type: dot_precision@3
value: 0.26
name: Dot Precision@3
- type: dot_precision@5
value: 0.16399999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.5
name: Dot Recall@1
- type: dot_recall@3
value: 0.71
name: Dot Recall@3
- type: dot_recall@5
value: 0.725
name: Dot Recall@5
- type: dot_recall@10
value: 0.83
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6741722815754707
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.625079365079365
name: Dot Mrr@10
- type: dot_map@100
value: 0.6257231669822414
name: Dot Map@100
- type: query_active_dims
value: 93.36000061035156
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.996941222704595
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 216.22164916992188
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9929158754613091
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.6938775510204082
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8163265306122449
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9183673469387755
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9795918367346939
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6938775510204082
name: Dot Precision@1
- type: dot_precision@3
value: 0.6054421768707483
name: Dot Precision@3
- type: dot_precision@5
value: 0.5551020408163266
name: Dot Precision@5
- type: dot_precision@10
value: 0.4714285714285715
name: Dot Precision@10
- type: dot_recall@1
value: 0.047168647543802934
name: Dot Recall@1
- type: dot_recall@3
value: 0.1242876166088582
name: Dot Recall@3
- type: dot_recall@5
value: 0.18897477014392502
name: Dot Recall@5
- type: dot_recall@10
value: 0.3121200418234938
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5340387262419134
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7832685455134434
name: Dot Mrr@10
- type: dot_map@100
value: 0.3940255757013834
name: Dot Map@100
- type: query_active_dims
value: 47.48979568481445
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9984440798216102
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 139.98329162597656
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9954136920376785
name: Corpus Sparsity Ratio
splade-co-condenser-marco trained on MS MARCO hard negatives with distillation
This is a SPLADE Sparse Encoder model finetuned from Luyu/co-condenser-marco on the msmarco dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: Luyu/co-condenser-marco
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-co-condenser-marco-msmarco-qwen3-reranker-0.6B-margin-mse")
# Run inference
queries = [
"what town is grand lake st mary near",
]
documents = [
'Grand Lake St. Marys State Park. Grand Lake St. Marys State Park is an American state park, west of St. Marys, and south-east of Celina, 23 miles (37 km) south-west of Lima in the north-western part of Ohio. Grand Lake covers 13,500 acres (5,500 ha) in Mercer and Auglaize counties.',
'Lake Poinsett. Home > Florida Lakes > Lake Poinsett. Lake Poinsett BASS ONLINE 2016-10-18T14:26:01+00:00. Lake Poinsett Fishing. As the St. Johns River snakes out of Lake Washington and through the lush, green marshes, it eventually forms a â\x80\x98minorâ\x80\x99 wide spot in its trace some eight miles to the North.',
'Slavery in America began when the first African slaves were brought to the North American colony of Jamestown, Virginia, in 1619, to aid in the production of such lucrative crops as tobacco.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[23.0166, 12.0320, 1.7877]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.38 | 0.36 | 0.5 | 0.32 | 0.78 | 0.76 | 0.4 | 0.84 | 0.82 | 0.42 | 0.14 | 0.52 | 0.6939 |
dot_accuracy@3 | 0.68 | 0.5 | 0.74 | 0.48 | 0.86 | 0.9 | 0.5 | 0.94 | 1.0 | 0.58 | 0.46 | 0.72 | 0.8163 |
dot_accuracy@5 | 0.76 | 0.62 | 0.78 | 0.58 | 0.9 | 0.92 | 0.62 | 0.96 | 1.0 | 0.66 | 0.58 | 0.74 | 0.9184 |
dot_accuracy@10 | 0.82 | 0.7 | 0.82 | 0.72 | 0.96 | 0.96 | 0.74 | 0.98 | 1.0 | 0.82 | 0.74 | 0.84 | 0.9796 |
dot_precision@1 | 0.38 | 0.36 | 0.5 | 0.32 | 0.78 | 0.76 | 0.4 | 0.84 | 0.82 | 0.42 | 0.14 | 0.52 | 0.6939 |
dot_precision@3 | 0.2267 | 0.32 | 0.2533 | 0.1733 | 0.68 | 0.3067 | 0.2133 | 0.4733 | 0.3867 | 0.2733 | 0.1533 | 0.26 | 0.6054 |
dot_precision@5 | 0.152 | 0.328 | 0.16 | 0.14 | 0.608 | 0.192 | 0.168 | 0.32 | 0.252 | 0.228 | 0.116 | 0.164 | 0.5551 |
dot_precision@10 | 0.082 | 0.264 | 0.088 | 0.098 | 0.516 | 0.104 | 0.106 | 0.172 | 0.134 | 0.164 | 0.074 | 0.094 | 0.4714 |
dot_recall@1 | 0.38 | 0.024 | 0.46 | 0.159 | 0.0805 | 0.7167 | 0.2261 | 0.42 | 0.744 | 0.0877 | 0.14 | 0.5 | 0.0472 |
dot_recall@3 | 0.68 | 0.0792 | 0.69 | 0.2357 | 0.1699 | 0.8533 | 0.2985 | 0.71 | 0.938 | 0.1697 | 0.46 | 0.71 | 0.1243 |
dot_recall@5 | 0.76 | 0.0983 | 0.73 | 0.2957 | 0.2371 | 0.8833 | 0.4133 | 0.8 | 0.9687 | 0.2347 | 0.58 | 0.725 | 0.189 |
dot_recall@10 | 0.82 | 0.1246 | 0.79 | 0.3847 | 0.3389 | 0.9433 | 0.527 | 0.86 | 0.99 | 0.3357 | 0.74 | 0.83 | 0.3121 |
dot_ndcg@10 | 0.6108 | 0.3105 | 0.6426 | 0.325 | 0.634 | 0.8472 | 0.4163 | 0.7969 | 0.9198 | 0.326 | 0.4314 | 0.6742 | 0.534 |
dot_mrr@10 | 0.5427 | 0.4639 | 0.6181 | 0.4319 | 0.834 | 0.8369 | 0.4877 | 0.895 | 0.9033 | 0.5275 | 0.3336 | 0.6251 | 0.7833 |
dot_map@100 | 0.551 | 0.1358 | 0.5913 | 0.2561 | 0.4791 | 0.8096 | 0.3523 | 0.7206 | 0.8869 | 0.2485 | 0.3456 | 0.6257 | 0.394 |
query_active_dims | 47.4 | 46.64 | 55.28 | 110.88 | 48.7 | 76.32 | 52.36 | 81.46 | 50.98 | 77.1 | 184.38 | 93.36 | 47.4898 |
query_sparsity_ratio | 0.9984 | 0.9985 | 0.9982 | 0.9964 | 0.9984 | 0.9975 | 0.9983 | 0.9973 | 0.9983 | 0.9975 | 0.994 | 0.9969 | 0.9984 |
corpus_active_dims | 140.1564 | 215.3624 | 160.6441 | 192.7664 | 181.0865 | 218.5546 | 134.6856 | 189.121 | 54.8137 | 191.1029 | 172.4982 | 216.2216 | 139.9833 |
corpus_sparsity_ratio | 0.9954 | 0.9929 | 0.9947 | 0.9937 | 0.9941 | 0.9928 | 0.9956 | 0.9938 | 0.9982 | 0.9937 | 0.9943 | 0.9929 | 0.9954 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4133 |
dot_accuracy@3 | 0.6267 |
dot_accuracy@5 | 0.7133 |
dot_accuracy@10 | 0.7867 |
dot_precision@1 | 0.4133 |
dot_precision@3 | 0.2644 |
dot_precision@5 | 0.2107 |
dot_precision@10 | 0.1447 |
dot_recall@1 | 0.2879 |
dot_recall@3 | 0.4693 |
dot_recall@5 | 0.5227 |
dot_recall@10 | 0.5778 |
dot_ndcg@10 | 0.5177 |
dot_mrr@10 | 0.5369 |
dot_map@100 | 0.4213 |
query_active_dims | 49.6067 |
query_sparsity_ratio | 0.9984 |
corpus_active_dims | 164.0576 |
corpus_sparsity_ratio | 0.9946 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.5334 |
dot_accuracy@3 | 0.7059 |
dot_accuracy@5 | 0.7722 |
dot_accuracy@10 | 0.8523 |
dot_precision@1 | 0.5334 |
dot_precision@3 | 0.3327 |
dot_precision@5 | 0.2602 |
dot_precision@10 | 0.1821 |
dot_recall@1 | 0.3065 |
dot_recall@3 | 0.4707 |
dot_recall@5 | 0.5319 |
dot_recall@10 | 0.6151 |
dot_ndcg@10 | 0.5745 |
dot_mrr@10 | 0.6371 |
dot_map@100 | 0.492 |
query_active_dims | 74.8382 |
query_sparsity_ratio | 0.9975 |
corpus_active_dims | 164.4836 |
corpus_sparsity_ratio | 0.9946 |
Training Details
Training Dataset
msmarco
- Dataset: msmarco at 9e329ed
- Size: 90,000 training samples
- Columns:
query
,positive
,negative
, andscore
- Approximate statistics based on the first 1000 samples:
query positive negative score type string string string float details - min: 4 tokens
- mean: 9.05 tokens
- max: 22 tokens
- min: 17 tokens
- mean: 79.74 tokens
- max: 228 tokens
- min: 14 tokens
- mean: 77.68 tokens
- max: 256 tokens
- min: -3.38
- mean: 10.51
- max: 21.0
- Samples:
query positive negative score journal entries for standard cost variances
1 Fiber Optic, Inc., investigates all variances above 10 percent of the flexible budget. 2 The flexible budget for direct materials is $50,000. 3 The direct materials price variance is $4,000 unfavorable and the direct materials quantity variance is $(6,000) favorable. Assuming a standard price of $5 per yard, prepare a journal entry to record the purchase of raw materials for the month. 2 The company used 39,000 yards of material in production for the month, and the flexible budget shows the company expected to use 40,800 yards.
In accounting the monthly close is the processing of transactions, journal entries and financial statements at the end of each month.
9.375
what county in pana, il in?
Pana /ËpeɪnÉ/ is a city in Christian County, Illinois, United States. The population was 5,614 at the 2000 census.
Burr Ridge, IL is currently using an area code overlay in which area codes 331 and 630 serve the same geographic area. Ten digit dialing (area code + seven digit number) is necessary. In addition to Burr Ridge, IL area code information read more about area codes 331 and 630 details and Illinois area codes. Burr Ridge, IL is located in DuPage County and observes the Central Time Zone. View our Times by Area Code tool.
13.75
when was keep on loving you released
Share this page. REO's first Top 40 appearance proved to be a fruitful one, with the group taking Keep on Loving You to the number one spot in December of 1980.
Description: âIf Loving You Is Wrongâ is the new dramatic series created for television by writer/director Tyler Perry, premiering this fall on OWN. âIf Loving You Is Wrongâ is the compelling story of several women from very different walks of life.ack to the Have and The Have Nots, the scenes are too long and the characters are one dimensional. If it wasn't for Tika Sumpter, the show would be unbearable to watch. Love Thy Neighbor is the worst show ever. It is a throwback to blackface mistrel shows.
8.875
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMarginMSELoss", "document_regularizer_weight": 0.08, "query_regularizer_weight": 0.1 }
Evaluation Dataset
msmarco
- Dataset: msmarco at 9e329ed
- Size: 10,000 evaluation samples
- Columns:
query
,positive
,negative
, andscore
- Approximate statistics based on the first 1000 samples:
query positive negative score type string string string float details - min: 4 tokens
- mean: 9.22 tokens
- max: 43 tokens
- min: 19 tokens
- mean: 80.19 tokens
- max: 209 tokens
- min: 14 tokens
- mean: 77.78 tokens
- max: 239 tokens
- min: -9.0
- mean: 10.74
- max: 21.75
- Samples:
query positive negative score what trump said about obama playing golf during campaign
Obama also has played golf with Woods during his presidency, though typically the presidentâs golf partners are personal friends and select aides, as opposed to celebrities. At a campaign rally in December 2015, Trump ripped into Obama for playing hundreds of rounds of golf as president. âHe played more golf last year than Tiger Woods,â Trump said suggestively. âWe donât have time for this. We have to work.â.
Trump slams Obama, Clinton for 'politically correct' war against ISIS, warns of more attacks. Republican presidential nominee Donald Trump has accused the Obama administration of waging a 'politically correct' war against the ISIS terror group and warned that more terror attacks would take place.
8.421875
how much volume is a gram
One gram is equal to 0.0353 ounces. A gram of sugar is approximately 1/4 teaspoon of sugar. A regular paper clip weighs about 1 gram. The gram and kilogram are units of mass in the metric system of measurement. The metric system was invented in France in 1799. It was improved in 1960 and named the System of International Units, or SI.
Divide the object's mass by its volume. This value is the object's density and expresses it in units of mass per unit of volume. For example, for a 20-gram mass that takes up a volume of 5 cubic centimeters, the density is 4 grams per cubic centimeter.Ad.ivide the object's mass by its volume. This value is the object's density and expresses it in units of mass per unit of volume. For example, for a 20-gram mass that takes up a volume of 5 cubic centimeters, the density is 4 grams per cubic centimeter. Ad.
2.65625
differences between the sexes
sexual dimorphism in birds can be manifested in size or plumage differences between the sexes sexual size dimorphism varies among taxa with males typically being larger though this is not always the case i e birds of prey hummingbirds and some species of flightless birds
Caribou are the only species of deer in which both sexes have antlers. Mature bulls can carry enormous and complex antlers, whereas cows and young animals generally have smaller and simpler ones. Mature bulls usually shed their antlers shortly after the rut whereas cows can keep theirs until spring.
10.21875
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMarginMSELoss", "document_regularizer_weight": 0.08, "query_regularizer_weight": 0.1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0178 | 100 | 576200.8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0356 | 200 | 2635.0334 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0533 | 300 | 70.7781 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0711 | 400 | 46.7365 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0889 | 500 | 33.3391 | 46.8835 | 0.5158 | 0.2778 | 0.6192 | 0.4709 | - | - | - | - | - | - | - | - | - | - |
0.1067 | 600 | 29.4815 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1244 | 700 | 27.123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1422 | 800 | 22.7267 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.16 | 900 | 22.2125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1778 | 1000 | 23.7129 | 22.1341 | 0.5768 | 0.2807 | 0.5689 | 0.4754 | - | - | - | - | - | - | - | - | - | - |
0.1956 | 1100 | 23.1061 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2133 | 1200 | 23.3015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2311 | 1300 | 19.0495 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2489 | 1400 | 20.465 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2667 | 1500 | 19.5227 | 18.4953 | 0.5447 | 0.2930 | 0.5663 | 0.4680 | - | - | - | - | - | - | - | - | - | - |
0.2844 | 1600 | 19.7019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3022 | 1700 | 20.2723 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.32 | 1800 | 18.644 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3378 | 1900 | 17.8863 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3556 | 2000 | 17.824 | 21.6579 | 0.5722 | 0.2951 | 0.5739 | 0.4804 | - | - | - | - | - | - | - | - | - | - |
0.3733 | 2100 | 18.2091 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3911 | 2200 | 17.9996 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4089 | 2300 | 15.7506 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4267 | 2400 | 17.8921 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4444 | 2500 | 16.3761 | 20.0396 | 0.5493 | 0.2811 | 0.6257 | 0.4854 | - | - | - | - | - | - | - | - | - | - |
0.4622 | 2600 | 18.1791 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.48 | 2700 | 15.3429 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4978 | 2800 | 14.9936 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5156 | 2900 | 15.364 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5333 | 3000 | 15.6449 | 17.3149 | 0.5672 | 0.3030 | 0.6095 | 0.4932 | - | - | - | - | - | - | - | - | - | - |
0.5511 | 3100 | 15.6673 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5689 | 3200 | 15.0578 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5867 | 3300 | 15.906 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6044 | 3400 | 15.6495 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6222 | 3500 | 13.6636 | 14.5839 | 0.5683 | 0.2978 | 0.6191 | 0.4951 | - | - | - | - | - | - | - | - | - | - |
0.64 | 3600 | 14.7215 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6578 | 3700 | 15.1004 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6756 | 3800 | 13.7198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6933 | 3900 | 13.9975 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 4000 | 13.5657 | 14.8618 | 0.5983 | 0.3042 | 0.6183 | 0.5069 | - | - | - | - | - | - | - | - | - | - |
0.7289 | 4100 | 13.8326 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7467 | 4200 | 14.5209 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7644 | 4300 | 13.4064 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7822 | 4400 | 13.7625 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8 | 4500 | 13.2154 | 14.3594 | 0.5734 | 0.3266 | 0.6345 | 0.5115 | - | - | - | - | - | - | - | - | - | - |
0.8178 | 4600 | 13.7091 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8356 | 4700 | 12.5913 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8533 | 4800 | 12.433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8711 | 4900 | 13.0404 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8889 | 5000 | 12.409 | 14.0825 | 0.6108 | 0.3105 | 0.6426 | 0.5213 | - | - | - | - | - | - | - | - | - | - |
0.9067 | 5100 | 12.4556 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9244 | 5200 | 12.4219 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9422 | 5300 | 12.4269 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.96 | 5400 | 12.5363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9778 | 5500 | 12.4979 | 13.8156 | 0.6024 | 0.3101 | 0.6405 | 0.5177 | - | - | - | - | - | - | - | - | - | - |
0.9956 | 5600 | 11.9616 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.6108 | 0.3105 | 0.6426 | 0.5745 | 0.3250 | 0.6340 | 0.8472 | 0.4163 | 0.7969 | 0.9198 | 0.3260 | 0.4314 | 0.6742 | 0.5340 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.13.3
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.53.0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMarginMSELoss
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}