๐Ÿฆ™ Gorani LoRA 3B (Llama 3.2-3B ๊ธฐ๋ฐ˜)

๐Ÿ”น Model Details

  • Base Model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit
  • LoRA Adapter: QLoRA ์ ์šฉ (bnb-4bit)
  • Fine-tuned on: Custom parallel corpus (Korean-English)
  • Quantization: 4-bit (bnb-4bit)
  • Language: Korean & English
  • Training Method: Supervised Fine-tuning (SFT) + LoRA
  • Optimizer: AdamW (betas=(0.9, 0.95), weight_decay=0.01)

๐Ÿ”น Hyperparameters

Hyperparameter Value
Learning Rate 2e-4
Batch Size 16
Epochs 3
Warmup Steps 500
Gradient Accumulation 4

๐Ÿ”น Evaluation Results

๋ชจ๋ธ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด Comet Score ๋ฐ BERT Score๋ฅผ ์‚ฌ์šฉํ–ˆ์Œ.

Model Version Comet Score โ†‘ BERT Score โ†‘
gorani-lora-v1 0.78 0.85
gorani-lora-v2 0.82 0.88
gorani-lora-v3 0.85 0.90

๐Ÿ”น How to Use

from transformers import AutoModel, AutoTokenizer
from peft import PeftModel

base_model = AutoModel.from_pretrained("unsloth/Llama-3.2-3B-Instruct-bnb-4bit")
adapter_model = PeftModel.from_pretrained(base_model, "aripos1/gorani-lora-3b")

tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B-Instruct-bnb-4bit")

text = "์•ˆ๋…•ํ•˜์„ธ์š”, ์˜ค๋Š˜์˜ ๋‚ ์”จ๋Š”?"
inputs = tokenizer(text, return_tensors="pt")
outputs = adapter_model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aripos1/gorani-lora-3b

Dataset used to train aripos1/gorani-lora-3b