KannadaBERT-lamb
This model is a fine-tuned version of Chakita/KannadaBERT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2098
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 319 | 3.6259 |
3.9523 | 2.0 | 638 | 3.6620 |
3.9523 | 3.0 | 957 | 3.5293 |
3.7334 | 4.0 | 1276 | 3.6279 |
3.6238 | 5.0 | 1595 | 3.4369 |
3.6238 | 6.0 | 1914 | 3.4624 |
3.5668 | 7.0 | 2233 | 3.3384 |
3.5026 | 8.0 | 2552 | 3.4141 |
3.5026 | 9.0 | 2871 | 3.3134 |
3.4171 | 10.0 | 3190 | 3.2900 |
3.358 | 11.0 | 3509 | 3.1716 |
3.358 | 12.0 | 3828 | 3.1200 |
3.2705 | 13.0 | 4147 | 3.1204 |
3.2705 | 14.0 | 4466 | 3.0478 |
3.1964 | 15.0 | 4785 | 2.9918 |
3.1388 | 16.0 | 5104 | 3.0790 |
3.1388 | 17.0 | 5423 | 2.9753 |
3.094 | 18.0 | 5742 | 2.9102 |
3.0608 | 19.0 | 6061 | 2.8584 |
3.0608 | 20.0 | 6380 | 2.7935 |
3.0029 | 21.0 | 6699 | 2.7997 |
2.9807 | 22.0 | 7018 | 2.8857 |
2.9807 | 23.0 | 7337 | 2.8606 |
2.9287 | 24.0 | 7656 | 2.8186 |
2.9287 | 25.0 | 7975 | 2.7788 |
2.894 | 26.0 | 8294 | 2.7850 |
2.8592 | 27.0 | 8613 | 2.6883 |
2.8592 | 28.0 | 8932 | 2.7090 |
2.8158 | 29.0 | 9251 | 2.5496 |
2.7705 | 30.0 | 9570 | 2.7173 |
2.7705 | 31.0 | 9889 | 2.5792 |
2.7425 | 32.0 | 10208 | 2.5922 |
2.7014 | 33.0 | 10527 | 2.5099 |
2.7014 | 34.0 | 10846 | 2.5285 |
2.6643 | 35.0 | 11165 | 2.5281 |
2.6643 | 36.0 | 11484 | 2.4245 |
2.6002 | 37.0 | 11803 | 2.4300 |
2.5816 | 38.0 | 12122 | 2.3803 |
2.5816 | 39.0 | 12441 | 2.2476 |
2.5257 | 40.0 | 12760 | 2.2816 |
2.5016 | 41.0 | 13079 | 2.2871 |
2.5016 | 42.0 | 13398 | 2.2967 |
2.4552 | 43.0 | 13717 | 2.2689 |
2.4262 | 44.0 | 14036 | 2.2345 |
2.4262 | 45.0 | 14355 | 2.3149 |
2.3905 | 46.0 | 14674 | 2.2341 |
2.3905 | 47.0 | 14993 | 2.1906 |
2.3551 | 48.0 | 15312 | 2.2131 |
2.3406 | 49.0 | 15631 | 2.1505 |
2.3406 | 50.0 | 15950 | 2.1251 |
2.3076 | 51.0 | 16269 | 2.1266 |
2.2673 | 52.0 | 16588 | 2.1688 |
2.2673 | 53.0 | 16907 | 2.0224 |
2.249 | 54.0 | 17226 | 2.0511 |
2.2314 | 55.0 | 17545 | 2.0409 |
2.2314 | 56.0 | 17864 | 2.0156 |
2.1968 | 57.0 | 18183 | 2.0767 |
2.1638 | 58.0 | 18502 | 1.9530 |
2.1638 | 59.0 | 18821 | 2.0355 |
2.1452 | 60.0 | 19140 | 1.9454 |
2.1452 | 61.0 | 19459 | 1.9321 |
2.1209 | 62.0 | 19778 | 1.9333 |
2.0946 | 63.0 | 20097 | 1.8804 |
2.0946 | 64.0 | 20416 | 1.9018 |
2.074 | 65.0 | 20735 | 1.8112 |
2.0394 | 66.0 | 21054 | 1.8049 |
2.0394 | 67.0 | 21373 | 1.8753 |
2.0188 | 68.0 | 21692 | 1.7983 |
1.99 | 69.0 | 22011 | 1.8464 |
1.99 | 70.0 | 22330 | 1.7434 |
1.9644 | 71.0 | 22649 | 1.7874 |
1.9644 | 72.0 | 22968 | 1.7875 |
1.9533 | 73.0 | 23287 | 1.8250 |
1.926 | 74.0 | 23606 | 1.7371 |
1.926 | 75.0 | 23925 | 1.7980 |
1.9171 | 76.0 | 24244 | 1.7354 |
1.8955 | 77.0 | 24563 | 1.8076 |
1.8955 | 78.0 | 24882 | 1.6711 |
1.878 | 79.0 | 25201 | 1.6909 |
1.8386 | 80.0 | 25520 | 1.6858 |
1.8386 | 81.0 | 25839 | 1.7103 |
1.837 | 82.0 | 26158 | 1.6797 |
1.837 | 83.0 | 26477 | 1.6439 |
1.8287 | 84.0 | 26796 | 1.6634 |
1.7927 | 85.0 | 27115 | 1.5949 |
1.7927 | 86.0 | 27434 | 1.6433 |
1.77 | 87.0 | 27753 | 1.6567 |
1.7684 | 88.0 | 28072 | 1.5484 |
1.7684 | 89.0 | 28391 | 1.6145 |
1.7423 | 90.0 | 28710 | 1.6318 |
1.7295 | 91.0 | 29029 | 1.5427 |
1.7295 | 92.0 | 29348 | 1.6212 |
1.7098 | 93.0 | 29667 | 1.5626 |
1.7098 | 94.0 | 29986 | 1.6377 |
1.7087 | 95.0 | 30305 | 1.5701 |
1.6817 | 96.0 | 30624 | 1.4842 |
1.6817 | 97.0 | 30943 | 1.5769 |
1.6732 | 98.0 | 31262 | 1.5541 |
1.6512 | 99.0 | 31581 | 1.5648 |
1.6512 | 100.0 | 31900 | 1.5420 |
1.642 | 101.0 | 32219 | 1.4468 |
1.63 | 102.0 | 32538 | 1.4316 |
1.63 | 103.0 | 32857 | 1.4182 |
1.6254 | 104.0 | 33176 | 1.5147 |
1.6254 | 105.0 | 33495 | 1.5259 |
1.5967 | 106.0 | 33814 | 1.4105 |
1.5842 | 107.0 | 34133 | 1.3901 |
1.5842 | 108.0 | 34452 | 1.4855 |
1.5953 | 109.0 | 34771 | 1.5122 |
1.5772 | 110.0 | 35090 | 1.4486 |
1.5772 | 111.0 | 35409 | 1.3851 |
1.5643 | 112.0 | 35728 | 1.4139 |
1.5483 | 113.0 | 36047 | 1.3437 |
1.5483 | 114.0 | 36366 | 1.3224 |
1.5393 | 115.0 | 36685 | 1.3664 |
1.5156 | 116.0 | 37004 | 1.3576 |
1.5156 | 117.0 | 37323 | 1.4949 |
1.5242 | 118.0 | 37642 | 1.4403 |
1.5242 | 119.0 | 37961 | 1.3988 |
1.5263 | 120.0 | 38280 | 1.3910 |
1.5098 | 121.0 | 38599 | 1.4632 |
1.5098 | 122.0 | 38918 | 1.3871 |
1.4922 | 123.0 | 39237 | 1.3946 |
1.4898 | 124.0 | 39556 | 1.4390 |
1.4898 | 125.0 | 39875 | 1.2734 |
1.4807 | 126.0 | 40194 | 1.3209 |
1.4693 | 127.0 | 40513 | 1.3928 |
1.4693 | 128.0 | 40832 | 1.4490 |
1.466 | 129.0 | 41151 | 1.3710 |
1.466 | 130.0 | 41470 | 1.3957 |
1.4701 | 131.0 | 41789 | 1.2389 |
1.4411 | 132.0 | 42108 | 1.4310 |
1.4411 | 133.0 | 42427 | 1.3077 |
1.4374 | 134.0 | 42746 | 1.3514 |
1.4348 | 135.0 | 43065 | 1.3392 |
1.4348 | 136.0 | 43384 | 1.3673 |
1.4252 | 137.0 | 43703 | 1.3510 |
1.4209 | 138.0 | 44022 | 1.3027 |
1.4209 | 139.0 | 44341 | 1.2340 |
1.4195 | 140.0 | 44660 | 1.3203 |
1.4195 | 141.0 | 44979 | 1.3199 |
1.4001 | 142.0 | 45298 | 1.3095 |
1.416 | 143.0 | 45617 | 1.3576 |
1.416 | 144.0 | 45936 | 1.2701 |
1.4063 | 145.0 | 46255 | 1.2958 |
1.397 | 146.0 | 46574 | 1.2620 |
1.397 | 147.0 | 46893 | 1.2759 |
1.3987 | 148.0 | 47212 | 1.3024 |
1.374 | 149.0 | 47531 | 1.2234 |
1.374 | 150.0 | 47850 | 1.2767 |
1.3783 | 151.0 | 48169 | 1.2659 |
1.3783 | 152.0 | 48488 | 1.2980 |
1.3747 | 153.0 | 48807 | 1.3125 |
1.3761 | 154.0 | 49126 | 1.2958 |
1.3761 | 155.0 | 49445 | 1.3287 |
1.3605 | 156.0 | 49764 | 1.2724 |
1.3588 | 157.0 | 50083 | 1.3302 |
1.3588 | 158.0 | 50402 | 1.3242 |
1.352 | 159.0 | 50721 | 1.2390 |
1.3545 | 160.0 | 51040 | 1.2435 |
1.3545 | 161.0 | 51359 | 1.3246 |
1.3501 | 162.0 | 51678 | 1.2723 |
1.3501 | 163.0 | 51997 | 1.2139 |
1.3362 | 164.0 | 52316 | 1.2435 |
1.3457 | 165.0 | 52635 | 1.2198 |
1.3457 | 166.0 | 52954 | 1.2691 |
1.3298 | 167.0 | 53273 | 1.2945 |
1.335 | 168.0 | 53592 | 1.1958 |
1.335 | 169.0 | 53911 | 1.2011 |
1.3302 | 170.0 | 54230 | 1.3094 |
1.3258 | 171.0 | 54549 | 1.2617 |
1.3258 | 172.0 | 54868 | 1.3582 |
1.3151 | 173.0 | 55187 | 1.2570 |
1.3336 | 174.0 | 55506 | 1.2160 |
1.3336 | 175.0 | 55825 | 1.2224 |
1.3131 | 176.0 | 56144 | 1.2542 |
1.3131 | 177.0 | 56463 | 1.2518 |
1.3114 | 178.0 | 56782 | 1.2280 |
1.3034 | 179.0 | 57101 | 1.3342 |
1.3034 | 180.0 | 57420 | 1.2120 |
1.3124 | 181.0 | 57739 | 1.2109 |
1.3163 | 182.0 | 58058 | 1.2482 |
1.3163 | 183.0 | 58377 | 1.1576 |
1.3023 | 184.0 | 58696 | 1.2120 |
1.3135 | 185.0 | 59015 | 1.2895 |
1.3135 | 186.0 | 59334 | 1.2604 |
1.3053 | 187.0 | 59653 | 1.2423 |
1.3053 | 188.0 | 59972 | 1.1938 |
1.2964 | 189.0 | 60291 | 1.2544 |
1.2945 | 190.0 | 60610 | 1.2014 |
1.2945 | 191.0 | 60929 | 1.2223 |
1.2971 | 192.0 | 61248 | 1.2778 |
1.3007 | 193.0 | 61567 | 1.2427 |
1.3007 | 194.0 | 61886 | 1.2390 |
1.2885 | 195.0 | 62205 | 1.2286 |
1.3103 | 196.0 | 62524 | 1.2421 |
1.3103 | 197.0 | 62843 | 1.2015 |
1.3012 | 198.0 | 63162 | 1.2083 |
1.3012 | 199.0 | 63481 | 1.2305 |
1.2907 | 200.0 | 63800 | 1.1906 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.2
- Downloads last month
- 14