apwic/indobert-base-uncased-finetuned-nergrit

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1167
  • Validation Loss: 0.1784
  • Train Accuracy: 0.9483
  • Epoch: 24

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2352, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.4507 0.1933 0.9437 0
0.1708 0.1795 0.9471 1
0.1295 0.1784 0.9483 2
0.1169 0.1784 0.9483 3
0.1172 0.1784 0.9483 4
0.1180 0.1784 0.9483 5
0.1176 0.1784 0.9483 6
0.1172 0.1784 0.9483 7
0.1168 0.1784 0.9483 8
0.1174 0.1784 0.9483 9
0.1174 0.1784 0.9483 10
0.1178 0.1784 0.9483 11
0.1175 0.1784 0.9483 12
0.1175 0.1784 0.9483 13
0.1179 0.1784 0.9483 14
0.1176 0.1784 0.9483 15
0.1165 0.1784 0.9483 16
0.1179 0.1784 0.9483 17
0.1169 0.1784 0.9483 18
0.1170 0.1784 0.9483 19
0.1175 0.1784 0.9483 20
0.1177 0.1784 0.9483 21
0.1161 0.1784 0.9483 22
0.1174 0.1784 0.9483 23
0.1167 0.1784 0.9483 24

Framework versions

  • Transformers 4.33.0
  • TensorFlow 2.12.0
  • Datasets 2.14.6
  • Tokenizers 0.13.3
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for apwic/indobert-base-uncased-finetuned-nergrit

Finetuned
(368)
this model