See axolotl config
axolotl version: 0.10.0.dev0
adapter: lora
base_model: NousResearch/Yarn-Mistral-7b-128k
bf16: true
chat_template: llama3
datasets:
- data_files:
- 12015d7c9ee7f3df_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: None
field_instruction: instruct
field_output: output
field_system: None
format: None
no_input_format: None
system_format: '{system}'
system_prompt: None
eval_max_new_tokens: 256
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: apriasmoro/27e554a7-9349-41b8-b91f-45cc2482a433
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 15
micro_batch_size: 12
mlflow_experiment_name: /tmp/12015d7c9ee7f3df_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_steps: 200
sequence_len: 2048
special_tokens:
pad_token: </s>
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0aa91fdd-f464-4c35-9e87-5ba2524c6ecc
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: 0aa91fdd-f464-4c35-9e87-5ba2524c6ecc
warmup_steps: 100
weight_decay: 0.01
27e554a7-9349-41b8-b91f-45cc2482a433
This model is a fine-tuned version of NousResearch/Yarn-Mistral-7b-128k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5053
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 15
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0702 | 1 | 1.5261 |
No log | 0.2105 | 3 | 1.5915 |
No log | 0.4211 | 6 | 1.5176 |
No log | 0.6316 | 9 | 1.4834 |
2.1415 | 0.8421 | 12 | 1.4475 |
2.1415 | 1.0 | 15 | 1.5053 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for apriasmoro/27e554a7-9349-41b8-b91f-45cc2482a433
Base model
NousResearch/Yarn-Mistral-7b-128k