See axolotl config
axolotl version: 0.10.0.dev0
adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: true
chat_template: llama3
datasets:
- data_files:
- a7bec42aee25e0b5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_max_new_tokens: 256
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: apriasmoro/044d2362-b849-4351-ac66-7e5701ba5afd
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 285
micro_batch_size: 4
mlflow_experiment_name: /tmp/a7bec42aee25e0b5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_steps: 31
sequence_len: 2048
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: fd3933fe-ac58-454e-ae65-498874e457dd
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: fd3933fe-ac58-454e-ae65-498874e457dd
warmup_steps: 100
weight_decay: 0.01
044d2362-b849-4351-ac66-7e5701ba5afd
This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3859
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 285
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0023 | 1 | 0.6329 |
0.482 | 0.1088 | 48 | 0.4503 |
0.4092 | 0.2177 | 96 | 0.4176 |
0.4169 | 0.3265 | 144 | 0.4043 |
0.391 | 0.4354 | 192 | 0.3921 |
0.3942 | 0.5442 | 240 | 0.3859 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for apriasmoro/044d2362-b849-4351-ac66-7e5701ba5afd
Base model
sethuiyer/Medichat-Llama3-8B