amity-diarization-v00

This model is a fine-tuned version of pyannote/segmentation-3.0 on the amitysolution/sample-voice-dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3859
  • Model Preparation Time: 0.0036
  • Der: 0.1703
  • False Alarm: 0.0833
  • Missed Detection: 0.0724
  • Confusion: 0.0147

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.7173 0.6173 300 0.5827 0.0036 0.2729 0.0856 0.1579 0.0294
0.5741 1.2346 600 0.5245 0.0036 0.2527 0.0797 0.1465 0.0266
0.5122 1.8519 900 0.4829 0.0036 0.2298 0.0889 0.1161 0.0249
0.4546 2.4691 1200 0.4643 0.0036 0.2139 0.0874 0.1055 0.0211
0.4272 3.0864 1500 0.4459 0.0036 0.1997 0.0854 0.0943 0.0201
0.4063 3.7037 1800 0.4342 0.0036 0.1958 0.0870 0.0900 0.0189
0.3894 4.3210 2100 0.4303 0.0036 0.1911 0.0861 0.0871 0.0179
0.3806 4.9383 2400 0.4134 0.0036 0.1853 0.0936 0.0749 0.0168
0.3639 5.5556 2700 0.4033 0.0036 0.1815 0.0899 0.0751 0.0165
0.3576 6.1728 3000 0.4122 0.0036 0.1829 0.0879 0.0785 0.0164
0.3449 6.7901 3300 0.3998 0.0036 0.1792 0.0872 0.0762 0.0157
0.3458 7.4074 3600 0.4015 0.0036 0.1764 0.0823 0.0791 0.0150
0.3329 8.0247 3900 0.3985 0.0036 0.1742 0.0850 0.0740 0.0152
0.3287 8.6420 4200 0.3949 0.0036 0.1741 0.0855 0.0731 0.0155
0.331 9.2593 4500 0.3868 0.0036 0.1724 0.0871 0.0697 0.0156
0.3257 9.8765 4800 0.3903 0.0036 0.1711 0.0840 0.0719 0.0152
0.321 10.4938 5100 0.3865 0.0036 0.1701 0.0835 0.0718 0.0148
0.3224 11.1111 5400 0.3841 0.0036 0.1704 0.0838 0.0722 0.0143
0.3085 11.7284 5700 0.3876 0.0036 0.1711 0.0838 0.0723 0.0149
0.3157 12.3457 6000 0.3868 0.0036 0.1708 0.0839 0.0721 0.0148
0.3215 12.9630 6300 0.3840 0.0036 0.1702 0.0838 0.0720 0.0145
0.3141 13.5802 6600 0.3830 0.0036 0.1701 0.0832 0.0725 0.0144
0.3084 14.1975 6900 0.3845 0.0036 0.1704 0.0833 0.0724 0.0147
0.3176 14.8148 7200 0.3859 0.0036 0.1703 0.0833 0.0724 0.0147

Framework versions

  • Transformers 4.51.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
13
Safetensors
Model size
1.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aongwachi/amity-diarization-v00

Finetuned
(49)
this model