amity-diarization-v00
This model is a fine-tuned version of pyannote/segmentation-3.0 on the amitysolution/sample-voice-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.3859
- Model Preparation Time: 0.0036
- Der: 0.1703
- False Alarm: 0.0833
- Missed Detection: 0.0724
- Confusion: 0.0147
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|---|
0.7173 | 0.6173 | 300 | 0.5827 | 0.0036 | 0.2729 | 0.0856 | 0.1579 | 0.0294 |
0.5741 | 1.2346 | 600 | 0.5245 | 0.0036 | 0.2527 | 0.0797 | 0.1465 | 0.0266 |
0.5122 | 1.8519 | 900 | 0.4829 | 0.0036 | 0.2298 | 0.0889 | 0.1161 | 0.0249 |
0.4546 | 2.4691 | 1200 | 0.4643 | 0.0036 | 0.2139 | 0.0874 | 0.1055 | 0.0211 |
0.4272 | 3.0864 | 1500 | 0.4459 | 0.0036 | 0.1997 | 0.0854 | 0.0943 | 0.0201 |
0.4063 | 3.7037 | 1800 | 0.4342 | 0.0036 | 0.1958 | 0.0870 | 0.0900 | 0.0189 |
0.3894 | 4.3210 | 2100 | 0.4303 | 0.0036 | 0.1911 | 0.0861 | 0.0871 | 0.0179 |
0.3806 | 4.9383 | 2400 | 0.4134 | 0.0036 | 0.1853 | 0.0936 | 0.0749 | 0.0168 |
0.3639 | 5.5556 | 2700 | 0.4033 | 0.0036 | 0.1815 | 0.0899 | 0.0751 | 0.0165 |
0.3576 | 6.1728 | 3000 | 0.4122 | 0.0036 | 0.1829 | 0.0879 | 0.0785 | 0.0164 |
0.3449 | 6.7901 | 3300 | 0.3998 | 0.0036 | 0.1792 | 0.0872 | 0.0762 | 0.0157 |
0.3458 | 7.4074 | 3600 | 0.4015 | 0.0036 | 0.1764 | 0.0823 | 0.0791 | 0.0150 |
0.3329 | 8.0247 | 3900 | 0.3985 | 0.0036 | 0.1742 | 0.0850 | 0.0740 | 0.0152 |
0.3287 | 8.6420 | 4200 | 0.3949 | 0.0036 | 0.1741 | 0.0855 | 0.0731 | 0.0155 |
0.331 | 9.2593 | 4500 | 0.3868 | 0.0036 | 0.1724 | 0.0871 | 0.0697 | 0.0156 |
0.3257 | 9.8765 | 4800 | 0.3903 | 0.0036 | 0.1711 | 0.0840 | 0.0719 | 0.0152 |
0.321 | 10.4938 | 5100 | 0.3865 | 0.0036 | 0.1701 | 0.0835 | 0.0718 | 0.0148 |
0.3224 | 11.1111 | 5400 | 0.3841 | 0.0036 | 0.1704 | 0.0838 | 0.0722 | 0.0143 |
0.3085 | 11.7284 | 5700 | 0.3876 | 0.0036 | 0.1711 | 0.0838 | 0.0723 | 0.0149 |
0.3157 | 12.3457 | 6000 | 0.3868 | 0.0036 | 0.1708 | 0.0839 | 0.0721 | 0.0148 |
0.3215 | 12.9630 | 6300 | 0.3840 | 0.0036 | 0.1702 | 0.0838 | 0.0720 | 0.0145 |
0.3141 | 13.5802 | 6600 | 0.3830 | 0.0036 | 0.1701 | 0.0832 | 0.0725 | 0.0144 |
0.3084 | 14.1975 | 6900 | 0.3845 | 0.0036 | 0.1704 | 0.0833 | 0.0724 | 0.0147 |
0.3176 | 14.8148 | 7200 | 0.3859 | 0.0036 | 0.1703 | 0.0833 | 0.0724 | 0.0147 |
Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for aongwachi/amity-diarization-v00
Base model
pyannote/segmentation-3.0