anvorja's picture
Update README.md
d09866f verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xml-roberta-large-finetuned-corregido-tokenizadorES-mama
    results: []

xml-roberta-large-finetuned-corregido-tokenizadorES-mama

This model is a fine-tuned version of FacebookAI/xlm-roberta-large. It achieves the following results on the evaluation set:

  • Loss: 0.0460
  • Precision: 0.9110
  • Recall: 0.9394
  • F1: 0.9250
  • Accuracy: 0.9866

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.6643 1.0 86 2.5267 0.0 0.0 0.0 0.5837
1.9359 2.0 172 1.9628 0.0 0.0 0.0 0.6009
1.6777 3.0 258 1.6615 0.0357 0.0242 0.0289 0.6589
1.4374 4.0 344 1.3392 0.0945 0.0474 0.0632 0.7071
1.1194 5.0 430 1.0558 0.1712 0.1270 0.1458 0.7528
0.9551 6.0 516 0.8403 0.2826 0.2219 0.2486 0.7989
0.7683 7.0 602 0.6553 0.3573 0.3927 0.3742 0.8331
0.6506 8.0 688 0.4905 0.5 0.5087 0.5043 0.8727
0.5431 9.0 774 0.3954 0.5765 0.5941 0.5852 0.8949
0.4028 10.0 860 0.3061 0.6303 0.6632 0.6463 0.9178
0.3332 11.0 946 0.2540 0.6569 0.7296 0.6913 0.9313
0.2715 12.0 1032 0.2007 0.7223 0.7707 0.7457 0.9461
0.2678 13.0 1118 0.1619 0.7506 0.8013 0.7751 0.9557
0.2267 14.0 1204 0.1468 0.7608 0.8318 0.7948 0.9603
0.1875 15.0 1290 0.1357 0.7759 0.8413 0.8073 0.9640
0.1753 16.0 1376 0.1166 0.8112 0.8651 0.8372 0.9692
0.1616 17.0 1462 0.0967 0.8204 0.8788 0.8486 0.9731
0.1337 18.0 1548 0.0854 0.8389 0.8951 0.8661 0.9762
0.1298 19.0 1634 0.0676 0.8623 0.9014 0.8814 0.9804
0.1115 20.0 1720 0.0701 0.8687 0.9135 0.8905 0.9808
0.1139 21.0 1806 0.0602 0.8916 0.9278 0.9093 0.9830
0.114 22.0 1892 0.0543 0.8957 0.9278 0.9114 0.9842
0.0944 23.0 1978 0.0569 0.8922 0.9341 0.9127 0.9843
0.0893 24.0 2064 0.0517 0.8986 0.9346 0.9163 0.9852
0.0836 25.0 2150 0.0476 0.9057 0.9367 0.9210 0.9862
0.0841 26.0 2236 0.0489 0.9062 0.9367 0.9212 0.9859
0.0865 27.0 2322 0.0459 0.9095 0.9378 0.9234 0.9866
0.0859 28.0 2408 0.0464 0.9096 0.9394 0.9243 0.9866
0.0796 29.0 2494 0.0461 0.9101 0.9394 0.9245 0.9866
0.0774 29.6550 2550 0.0460 0.9110 0.9394 0.9250 0.9866

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1