xlm-roberta-large-clinical-ner-vocabulario-extendido-alingRau-sp
This model is a fine-tuned version of anvorja/xlm-roberta-medico-vocabulario-extendido on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0173
- Precision: 0.9817
- Recall: 0.9889
- F1: 0.9853
- Accuracy: 0.9951
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.4547 | 1.0 | 86 | 2.2205 | 0.0 | 0.0 | 0.0 | 0.6584 |
1.1284 | 2.0 | 172 | 1.0474 | 0.4300 | 0.3110 | 0.3610 | 0.7759 |
0.5552 | 3.0 | 258 | 0.4240 | 0.7206 | 0.7343 | 0.7274 | 0.9076 |
0.2985 | 4.0 | 344 | 0.2035 | 0.8502 | 0.8677 | 0.8589 | 0.9508 |
0.1927 | 5.0 | 430 | 0.1326 | 0.8683 | 0.9035 | 0.8856 | 0.9658 |
0.1295 | 6.0 | 516 | 0.1005 | 0.9052 | 0.9309 | 0.9179 | 0.9747 |
0.1145 | 7.0 | 602 | 0.0898 | 0.9151 | 0.9483 | 0.9314 | 0.9776 |
0.106 | 8.0 | 688 | 0.0619 | 0.9446 | 0.9536 | 0.9491 | 0.9846 |
0.0749 | 9.0 | 774 | 0.0509 | 0.9548 | 0.9678 | 0.9613 | 0.9870 |
0.0764 | 10.0 | 860 | 0.0441 | 0.9601 | 0.9758 | 0.9678 | 0.9895 |
0.0485 | 11.0 | 946 | 0.0375 | 0.9652 | 0.9800 | 0.9725 | 0.9910 |
0.0431 | 12.0 | 1032 | 0.0275 | 0.9698 | 0.9831 | 0.9764 | 0.9927 |
0.0485 | 13.0 | 1118 | 0.0309 | 0.9713 | 0.9815 | 0.9764 | 0.9926 |
0.037 | 14.0 | 1204 | 0.0229 | 0.9775 | 0.9863 | 0.9819 | 0.9942 |
0.045 | 15.0 | 1290 | 0.0200 | 0.9796 | 0.9863 | 0.9829 | 0.9947 |
0.0286 | 16.0 | 1376 | 0.0173 | 0.9817 | 0.9889 | 0.9853 | 0.9951 |
0.0348 | 17.0 | 1462 | 0.0177 | 0.9780 | 0.9847 | 0.9814 | 0.9945 |
0.0299 | 18.0 | 1548 | 0.0167 | 0.9796 | 0.9858 | 0.9827 | 0.9948 |
0.0308 | 19.0 | 1634 | 0.0165 | 0.9811 | 0.9868 | 0.9840 | 0.9950 |
0.0301 | 19.7719 | 1700 | 0.0164 | 0.9806 | 0.9868 | 0.9837 | 0.9951 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 93
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support