metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: breast-cancer-biomedical-ner-sp
results: []
language:
- es
pipeline_tag: token-classification
breast-cancer-biomedical-ner-sp
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the breast cancer dataset in spanish: anvorja/breast_cancer_es_dataset. It achieves the following results on the evaluation set:
- Loss: 0.0178
- Precision: 0.9793
- Recall: 0.9867
- F1: 0.9830
- Accuracy: 0.9948
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.1649 | 1.0 | 112 | 1.9231 | 0.0099 | 0.0051 | 0.0067 | 0.6051 |
0.8237 | 2.0 | 224 | 0.6627 | 0.5850 | 0.5669 | 0.5758 | 0.8329 |
0.391 | 3.0 | 336 | 0.3065 | 0.7703 | 0.8068 | 0.7882 | 0.9269 |
0.2341 | 4.0 | 448 | 0.1873 | 0.8221 | 0.875 | 0.8477 | 0.9558 |
0.1588 | 5.0 | 560 | 0.1463 | 0.8642 | 0.9078 | 0.8855 | 0.9641 |
0.129 | 6.0 | 672 | 0.1099 | 0.8836 | 0.9205 | 0.9017 | 0.9720 |
0.1098 | 7.0 | 784 | 0.0902 | 0.9166 | 0.9501 | 0.9330 | 0.9798 |
0.0764 | 8.0 | 896 | 0.0772 | 0.9167 | 0.9444 | 0.9303 | 0.9822 |
0.0745 | 9.0 | 1008 | 0.0613 | 0.9358 | 0.9577 | 0.9466 | 0.9856 |
0.0645 | 10.0 | 1120 | 0.0496 | 0.9564 | 0.9691 | 0.9627 | 0.9891 |
0.0623 | 11.0 | 1232 | 0.0426 | 0.9595 | 0.9722 | 0.9658 | 0.9898 |
0.0489 | 12.0 | 1344 | 0.0393 | 0.9596 | 0.9741 | 0.9668 | 0.9901 |
0.0389 | 13.0 | 1456 | 0.0307 | 0.9646 | 0.9798 | 0.9721 | 0.9917 |
0.0371 | 14.0 | 1568 | 0.0255 | 0.9737 | 0.9798 | 0.9767 | 0.9934 |
0.0232 | 15.0 | 1680 | 0.0228 | 0.9756 | 0.9830 | 0.9792 | 0.9939 |
0.0237 | 16.0 | 1792 | 0.0205 | 0.9762 | 0.9842 | 0.9802 | 0.9939 |
0.0262 | 17.0 | 1904 | 0.0178 | 0.9793 | 0.9867 | 0.9830 | 0.9948 |
0.0189 | 18.0 | 2016 | 0.0174 | 0.9793 | 0.9855 | 0.9824 | 0.9947 |
0.0188 | 19.0 | 2128 | 0.0170 | 0.9774 | 0.9848 | 0.9811 | 0.9946 |
0.0214 | 20.0 | 2240 | 0.0172 | 0.9781 | 0.9855 | 0.9818 | 0.9945 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
License
CC-BY-SA-4.0