Edit model card

XLS-R-300M - Slovenian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2578
  • Wer: 0.2273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 60.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.1829 4.88 400 3.1228 1.0
2.8675 9.76 800 2.8616 0.9993
1.583 14.63 1200 0.6392 0.6239
1.1959 19.51 1600 0.3602 0.3651
1.0276 24.39 2000 0.3021 0.2981
0.9671 29.27 2400 0.2872 0.2739
0.873 34.15 2800 0.2593 0.2459
0.8513 39.02 3200 0.2617 0.2473
0.8132 43.9 3600 0.2548 0.2426
0.7935 48.78 4000 0.2637 0.2353
0.7565 53.66 4400 0.2629 0.2322
0.7359 58.54 4800 0.2579 0.2253

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "zmago je divje od letel s helikopterjem visoko vzrak"

Eval results on Common Voice 8 "test" (WER):

Without LM With LM (run ./eval.py)
19.938 12.736
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm

Evaluation results